文章目录 1. 大纲2. 循环矩阵2.1 移位矩阵P2.2 P的特征值和特征向量2.3 循环卷积矩阵2.4 循环卷积计算 3. 傅里叶矩阵 1. 大纲 循环矩阵在机器学习,图像处理中的应用循环卷积矩阵的特征值,特征向量,卷积规则循环卷积矩阵多项式表达: C = c 0 I + c 1 P + c 2 P 2 + ⋯ + c n − 1 P n − 1 C=c_0 I+c_1P+c
白话特征向量 一个方阵 A A A 与列向量 v v v 的乘积会生成一个新的列向量。这个新向量通常与原向量有着不同的方向,矩阵在这里代表一个线性变换。然而,某些向量会保持其原始方向。我们称这种向量为矩阵 A A A 的特征向量(eigenvector)。 在本文中,我们将探讨特征向量、特征值和矩阵的特征方程。并且以 2 维方阵为例,教大家如何计算矩阵的特征向量和特征值。
特征值,特征向量概念 在线性代数中,对于一个给定的线性变换A,他的特征向量v经过这个线性变换的作用之后,得到的新向量仍然与原来的 v v v保持在同一条直线上。但长度或方向也许会改变。即: A v Av Av = λ v \lambda v λv 其中 λ \lambda λ为标量,即特征向量的长度在该线性变换下缩放的比例,称为其特征值。 A = [ 1 1 4 − 2 ] , v 1
参考视频:https://www.bilibili.com/video/BV1fx41137Zm 在线性代数中,对于一个给定的线性变换A,它的特征向量经过这个线性变换的作用之后,得到的新向量仍然与原来的v保持在同一条直线上,但长度或方向也许会改变,即: A v = λ v Av = \lambda v Av=λv 其中 λ \lambda λ为标量,即特征向量的长度在该线性变换下缩放的比例,称其