线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

本文主要是介绍线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.特征值和特征向量
    • 1.1 特征值和特征向量的定义
    • 1.2 特征值和特征向量的求法
    • 1.3 特征值特征向量的主要结论
  • 2.相似
    • 2.1 相似的定义
    • 2.2 相似的性质
    • 2.3 相似的结论
  • 3.相似对角化
  • 4.实对称矩阵
    • 4.1 实对称矩阵的基本性质
    • 4.2 施密特正交化
  • 5.重难点题型总结
    • 5.1 判断矩阵能否相似对角化
    • 5.2 已知两个矩阵相似,求某个矩阵中的未知参数
    • 5.3 相似时,求可逆矩阵P,使得P^-1^AP为对角矩阵
    • 5.4 求正交矩阵Q,使Q^T^AQ=Λ
    • 5.5 给出条件矩阵A方=A,我们能分析出什么?

1.特征值和特征向量

1.1 特征值和特征向量的定义

A为n阶,α是n维非0列向量
Aα=λα,α叫A对应λ的特征向量,叫λ特征值

1.2 特征值和特征向量的求法

⭐️三种求法:

  • 方法一:利用定义Aα=λα
  • 方法二:|λE-A|=0,利用行列式和基础解系
  • 方法三:利用相似,P-1AP=B

方法一:
定义法,定义法常常用于A是抽象形式的矩阵,求解其特征值和特征向量的问题。

方法二:
理论基础:
由定义 A α = λ α , α ≠ 0 ⇒ ( λ E − A ) α = 0 , α ≠ 0 ⇒ α 是 ( λ E − A ) x = 0 的非 0 解 由定义A\alpha = \lambda \alpha ,\alpha \neq 0\\\Rightarrow \left(\lambda E - A\right)\alpha = 0,\alpha \neq 0\\\Rightarrow \alpha 是\left(\lambda E - A\right)x = 0的非0解 由定义Aα=λαα=0(λEA)α=0,α=0α(λEA)x=0的非0

为什么先用行列式计算特征值,特征向量不能是零向量,所以是非零解,齐次线性方程是非零解,所以行列式=0,所以用行列式计算特征值,再用基础解系计算特征向量。

一.常规计算步骤
特征值的计算步骤:
第一步,计算行列式|λE-A|,因为存在非零解,秩必然是不满的,行列式=0,求出特征值。

第二步,通过求出的特征向量,代入回(λE-A)α=0这个齐次线性方程中,计算出特征向量即齐次线性方程的解向量。

二.通过已积累的结论,直接得出特征值
(1)上下三角矩阵,对角矩阵的特征值就是矩阵主对角线上的元素。
[ 1 2 4 0 3 5 0 0 6 ] , 特征值为 λ 1 = 1 , λ 2 = 3 , λ 3 = 6 \left[\begin{matrix} 1 & 2 & 4 \\ 0 & 3 & 5 \\ 0 & 0 & 6 \\ \end{matrix}\right],特征值为\lambda _{1} = 1,\lambda _{2} = 3,\lambda _{3} = 6 100230456 ,特征值为λ1=1λ2=3λ3=6

(2)秩1矩阵,特征值是它的迹,其余都是0
[ a a a a a a a a a ] 特征值为 λ 1 = 3 a , λ 2 = 0 , λ 3 = 0 \left[\begin{matrix} a & a & a \\ a & a & a \\ a & a & a \\ \end{matrix}\right]特征值为\lambda _{1} = 3a,\lambda _{2} = 0,\lambda _{3} = 0 aaaaaaaaa 特征值为λ1=3aλ2=0λ3=0
(3)通过已知矩阵A的特征值和特征向量,直接得到关于A矩阵其他基本变形的特征值和特征向量

在这里插入图片描述
f(A)多项式与A相似

1.3 特征值特征向量的主要结论

  1. 如a1a2是矩阵A关于特征值λ的特征向量,则k1a1+k2a2(非0时)仍是A关于λ的的特征向量。若a1a2是不同特征值的特征向量,则k1a1+k2a2不是A关于λ的的特征向量

∣ A ∣ = Π λ i , 其中 Π 是连乘 Σ λ i = Σ a i i = t r ( A ) , 矩阵的迹是特征值的和 \left|A\right| = \Pi \lambda _{i},其中\Pi 是连乘\\\Sigma \lambda _{i} = \Sigma a_{ii} = t_{r}\left(A\right),矩阵的迹是特征值的和 A=Πλi,其中Π是连乘Σλi=Σaii=tr(A),矩阵的迹是特征值的和

3.不同特征值的特征向量线性无关
4.λi是属于A的k重特征值,属于λi的k重特征向量最多不超过k个。

2.相似

2.1 相似的定义

相似的定义:
A矩阵相似于B,A~B,意味着存在可逆矩阵P使P-1AP=B

注意注意:A相似于B,这句话是有方向性的,规定是P-1AP=B,而B=PAP-1,A相似于B不能颠倒,没有P-1BP=A这种说法

2.2 相似的性质

A~B,则有以下结论
(1)|A|=|B|
(2)r(A)=r(B)
(3)|λE-A|=|λE-B|,即λAB
(4)迹相同,特征值都相同,迹肯定相同
(5)A,B的各阶主子式之和分别相等

关于性质(5)的说明,各阶主子式就是选行和选列的时候,行下标和列下标是一样的,下面给出列子,给出三阶矩阵,求二阶主子式,二阶主子式仅适合用于0多的题
[ 1 2 3 4 5 6 7 8 9 ] ,二阶主子式, [ 1 2 4 5 ] , [ 1 3 4 6 ] , [ 2 3 5 6 ] , [ 4 5 7 8 ] , [ 4 6 7 9 ] , [ 5 6 8 9 ] \left[\begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{matrix}\right],二阶主子式,\left[\begin{matrix} 1 & 2 \\ 4 & 5 \\ \end{matrix}\right],\left[\begin{matrix} 1 & 3 \\ 4 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 2 & 3 \\ 5 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 5 \\ 7 & 8 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 6 \\ 7 & 9 \\ \end{matrix}\right],\left[\begin{matrix} 5 & 6 \\ 8 & 9 \\ \end{matrix}\right] 147258369 ,二阶主子式,[1425][1436][2536][4758][4769][5869]

2.3 相似的结论

A与B相似的进一步推导结论
在这里插入图片描述
矩阵A与B相似

  • A-1相似于B-1
  • A*相似于B*
  • AT相似于BT
  • 关于分块矩阵
    若 A ~ C , B ~ D , 则 [ A O O B ] ~ [ C O O D ] 若A~C,B~D,则\left[\begin{matrix} A & O \\ O & B \\ \end{matrix}\right]~\left[\begin{matrix} C & O \\ O & D \\ \end{matrix}\right] ACBD,[AOOB][COOD]

3.相似对角化

A为n阶矩阵,存在n阶可逆矩阵P,若P-1AP=Λ,则称A可相似对角化,记做A~Λ,称对角矩阵是A的相似标准型。

关于相似对角化的结论总结:
在这里插入图片描述

注意充要条件和充分条件

4.实对称矩阵

4.1 实对称矩阵的基本性质

关于实对称矩阵,有更良好的性质,直接就满足可以相似对角化,并且还可以用正交矩阵相似对角化

实对称矩阵AT=A
1.实对称矩阵必与对角矩阵相似(可相似对角化)
2.实对称矩阵特征值不同特征向量相互正交
3.实对称矩阵可用正交矩阵相似对角化
Q-1AQ=QTAQ=Λ

因为QQT=E,.Q-1=QT

4.2 施密特正交化

根据 实对称矩阵的基本性质,不同特征值的特征向量相互正交,所以我们应该使用施密特正交化将相同特征值下的特征向量正交化,最后特征向量都要单位化。

施密特正交化公式:
在这里插入图片描述

5.重难点题型总结

5.1 判断矩阵能否相似对角化

例题1:来源 李永乐线代辅导讲义例5.15
在这里插入图片描述

例题2:来源 李永乐线代辅导讲义 例5.18
在这里插入图片描述

5.2 已知两个矩阵相似,求某个矩阵中的未知参数

解题思路:常常利用两个矩阵相似的性质,若相似矩阵之间的迹相等,行列式相等,各阶主子式之和相等

5.3 相似时,求可逆矩阵P,使得P-1AP为对角矩阵

利用相似的传递性

例题1:来源 李永乐线代辅导讲义例5.20
在这里插入图片描述

5.4 求正交矩阵Q,使QTAQ=Λ

例题1:来源 李永乐线代辅导讲义例5.27
在这里插入图片描述

5.5 给出条件矩阵A方=A,我们能分析出什么?

有些题目中,给出矩阵A2=A的时候,我们可以得到两方面信息,一方面是关于秩,一方面是关于特征值。

关于秩:
A 2 = A ⇒ A 2 − A = 0 ⇒ A ( A − E ) = 0 ⇒ r ( A ) + r ( A − E ) ≤ n A − ( A − E ) = E ⇒ r ( A ) + r ( B ) ≥ r ( A + B ) ⇒ r ( A ) + r ( A − E ) ≥ r ( E ) = n 综上所述,结论如下: r ( A ) + r ( A − E ) = n A^{2} = A\Rightarrow A^{2} - A = 0\Rightarrow A\left(A - E\right) = 0\Rightarrow r\left(A\right) + r\left(A - E\right) \leq n\\A - \left(A - E\right) = E\Rightarrow r\left(A\right) + r\left(B\right) \geq r\left(A + B\right)\Rightarrow r\left(A\right) + r\left(A - E\right) \geq r\left(E\right) = n\\综上所述,结论如下:r\left(A\right) + r\left(A - E\right) = n A2=AA2A=0A(AE)=0r(A)+r(AE)nA(AE)=Er(A)+r(B)r(A+B)r(A)+r(AE)r(E)=n综上所述,结论如下:r(A)+r(AE)=n

关于特征值:
在这里插入图片描述

这篇关于线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146090

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

Springboot 中使用Sentinel的详细步骤

《Springboot中使用Sentinel的详细步骤》文章介绍了如何在SpringBoot中使用Sentinel进行限流和熔断降级,首先添加依赖,配置Sentinel控制台地址,定义受保护的资源,... 目录步骤 1: 添加 Sentinel 依赖步骤 2: 配置 Sentinel步骤 3: 定义受保护的

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查