相似专题

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使

SimD:基于相似度距离的小目标检测标签分配

摘要 https://arxiv.org/pdf/2407.02394 由于物体尺寸有限且信息不足,小物体检测正成为计算机视觉领域最具挑战性的任务之一。标签分配策略是影响物体检测精度的关键因素。尽管已经存在一些针对小物体的有效标签分配策略,但大多数策略都集中在降低对边界框的敏感性以增加正样本数量上,并且需要设置一些固定的超参数。然而,更多的正样本并不一定会带来更好的检测结果,事实上,过多的正样本

Matlab)实现HSV非等间隔量化--相似判断:欧式距离--输出图片-

%************************************************************************** %                                 图像检索——提取颜色特征 %HSV空间颜色直方图(将RGB空间转化为HS

【python 走进NLP】两两求相似度,得到一条文本和其他文本最大的相似度

应用场景: 一个数据框里面文本,两两求相似度,得到一条文本和其他文本最大的相似度。 content source_id0 丰华股份军阀割据发生的故事大概多少w 11 丰华股份军阀割据发生的故事大概多少 22 丰华股份军阀割据发生的故事大概多少 33 丰华股份军阀割据发生的故事大概多少

【java 走进NLP】simhash 算法计算两篇文章相似度

python 计算两篇文章的相似度算法simhash见: https://blog.csdn.net/u013421629/article/details/85052915 对长文本 是比较合适的(超过500字以上) 下面贴上java 版本实现: pom.xml 加入依赖 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</a

【python 走进NLP】simhash 算法计算两篇文章相似度

互联网网页存在大量的重复内容网页,无论对于搜索引擎的网页去重和过滤、新闻小说等内容网站的内容反盗版和追踪,还是社交媒体等文本去重和聚类,都需要对网页或者文本进行去重和过滤。最简单的文本相似性计算方法可以利用空间向量模型,计算分词后的文本的特征向量的相似性,这种方法存在效率的严重弊端,无法针对海量的文本进行两两的相似性判断。模仿生物学指纹的特点,对每个文本构造一个指纹,来作为该文本的标识,从形式上来

【python 走进NLP】文本相似度各种距离计算

计算文本相似度有什么用? 1、反垃圾文本的捞取 “诚聘淘宝兼职”、“诚聘打字员”…这样的小广告满天飞,作为网站或者APP的运营者,不可能手动将所有的广告文本放入屏蔽名单里,挑几个典型广告文本,与它满足一定相似度就进行屏蔽。 2、推荐系统 在微博和各大BBS上,每一篇文章/帖子的下面都有一个推荐阅读,那就是根据一定算法计算出来的相似文章。 3、冗余过滤 我们每天接触过量的信息,信息之间存在大量

【python 走进NLP】句子相似度计算--余弦相似度

余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中,如最常见的二维空间。 github 参考链接:https://github.com/ZhanPwBibiBibi/CHlikelihood # -*- coding: utf-8 -*-import jiebaimport numpy as npimpor

【python 图片搜索】python 快速计算两个图片的相似度

一、图片相似度检测算法原理 我们日常中处理的数据大多数是文本和图片,既然文本有文本相似度,图片肯定也有图片相似度呀,是不是。下面介绍图片相似度检测的算法:检查两个图片的相似度,一个简单而快速的算法:感知哈希算法(Perceptual Hash),通过某种提取特征的方式为每个图片计算一个指纹(哈希),这样对比两个图片相似与否就变成了对比两个指纹异同的问题。 二、应用 相似图片搜索图片相似度比较百度

NLP文本相似度之LCS

基础 LCS(Longest Common Subsequence)通常指的是最长公共子序列,区别最长公共字串(Longest Common Substring)。我们先从子序列的定义理解: 一个序列S任意删除若干个字符得到新的序列T,则T叫做S的子序列。 子序列和子串的一个很大的不同点是,子序列不要求连接,而子串要求连接。 两个序列X和Y的公共子序列中,长度最长的那个,定义为X和Y

NLP 文本相似度(一)

一份文本,从结构上划分可以是:字、词、句、段、篇。文本比较的粒度是词,一篇文章,可以划分成N个不同的词,选取其中包含重要信息的M个词作为这片文章的特征。M个词构成了M维的向量,两个文本之间的比较就是两个M维向量之间的比较。 余弦相似度 向量之间如何比较?我们可以采用余弦相似度,其描述如下: 一个向量空间中两个向量夹角的余弦值可以作为衡量两个个体之间差异的大小;余弦值越接近1,夹角趋于0,表明

句子相似 BM25 python 实现

# -*- coding: utf-8 -*-import mathclass BM25(object):def __init__(self, docs):""":param docs: 分好词的list"""self.D = len(docs)self.avgdl = sum([len(doc)+0.0 for doc in docs]) / self.Dself.docs =

搜索相似之——BM25算法

1.       BM25算法 BM25是二元独立模型的扩展,其得分函数有很多形式,最普通的形式如下:   ∑    其中,k1,k2,K均为经验设置的参数,fi是词项在文档中的频率,qfi是词项在查询中的频率。 K1通常为1.2,通常为0-1000 K的形式较为复杂   K=

相似哈希技术在溯源分析中的应用

随着软件开发的日益复杂化和全球化,代码复用和变体生成变得愈发普遍,导致在不同项目之间追踪代码的来源和演变变得更加困难。在这种背景下,相似哈希技术(Simhash, Minhash等)成为溯源分析中的一项关键工具,能够高效识别和比较不同代码片段之间的相似性,帮助开发者和安全专家精确地追溯代码的起源。 相似哈希技术的核心优势在于其能够将大量的代码内容压缩为固定长度的哈希值,同时保留内容的相似性特

模版匹配——在大量的图片中找到与模版相似的图像

传统的特征匹配算法: 通过opencv自带的matchtemplate方法识别发现对形变、旋转的效果不是很好,后来尝试利用orb特征、sift特征匹配,由于车辆很多特征很相似,也不能很好的区分,如利用sift特征匹配效果如下: 代码: import shutilimport cv2import numpy as npimport osdef calculate_match_score(

自然语言处理-应用场景-聊天机器人(三):MaLSTM【基于FAQ 的问答系统】【文本向量化-->问题召回(利用PySparNN句子相似度计算海选相似问题)-->问题排序(深度学习:句子相似度计算)】

一、问答机器人介绍 1. 问答机器人 在前面的课程中,我们已经对问答机器人介绍过,这里的问答机器人是我们在分类之后,对特定问题进行回答的一种机器人。至于回答的问题的类型,取决于我们的语料。 当前我们需要实现的问答机器人是一个回答编程语言(比如python是什么,python难么等)相关问题的机器人 2. 问答机器人的实现逻辑 主要实现逻辑:从现有的问答对中,选择出和问题最相似的问题,

NLP-文本匹配-2013:DSSM【首次提出将深度学习应用到文本匹配,每个文本对象均由5层的神经网络进行向量化表示,最后通过向量间的余弦值来衡量文本对象的相似度】【釆用词袋模型,丢失单词顺序关系】

深度语义结构模型(DSSM)首次提出了将深度学习应用到文本匹配方法中,该模型通过建模用户查询和文档的匹配度,同传统文本匹配模型相比获得了显著的提升。在深度语义结构模型中,每个文本对象均由5层的神经网络进行向量化表示,最后通过向量间的余弦值来衡量文本对象的相似度 DSSM模型由宁完全采用全连接神经网络构建,以至于参数较多,不利于模型参数的学习与优化,并且DSSM模型在获取词(片段)嵌入时釆用了词袋

GNN-节点向量(Node Embedding)的表征学习-发展:随机游走/一阶二阶相似度(静态表征)【直接学习出各个节点的向量表示】 -->图卷积(动态表征)【学习节点间聚合函数的参数】

静态表征 基于“随机游走”、“Word2vec”的:DeepWalk、Node2vec、Metapath2vec;基于“一阶相似度”、“二阶相似度”的:LINE、SDNE; 动态表征(GCN、GraphSAGE、GAT)【训练聚合函数的参数】

自然语言处理(NLP)-第三方库(工具包):Faiss【向量最邻近检索工具】【为稠密向量提供高效相似度搜索】【多种索引构建方式,可根据硬件资源、数据量选择合适方式】【支持十亿级别向量的搜索】

一、Faiss介绍 Faiss是Facebook AI团队开源的针对聚类和相似性搜索库,为稠密向量提供高效相似度搜索和聚类,支持十亿级别向量的搜索,是目前最为成熟的近似近邻搜索库。它包含多种搜索任意大小向量集(备注:向量集大小由RAM内存决定)的算法,以及用于算法评估和参数调整的支持代码。Faiss用C++编写,并提供与Numpy完美衔接的Python接口。除此以外,对一些核心算法提供了GPU实

NLP10:基于SiameseNetwork的文本相似度计算

公众号:数据挖掘与机器学习笔记 一、文本相似度简介 在上一篇文章中,简要介绍了孪生网络(siamese network)的基本原理及应用实战,这里再使用孪生网络来进行文本相似度计算。 文本的相似性计算是“文本匹配”的一种特殊情况。一般来说,文本相似度计算任务的输入,是两篇文档,比如下表的前两个句子;输出是两篇文档的相似程度,通常用[0,1]区间内的小数来表示。 文本相似度计算在许

NLP07:基于潜在隐语义索引的文本相似度计算

1.潜在隐语义索引(LSI)概述 潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。 这里我们简要回顾下SVD:对于一个 m × n m \times n m×n的矩阵

图像相似度计算方法

图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。      可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。     还有一方面就是基于图像内容的图像检索,

python实战实例:图像相似度旋转模糊处理

1.图像相似度—题目描述 给出两幅相同大小的黑白图像(用 0−1矩阵)表示,求它们的相似度。 说明:若两幅图像在相同位置上的像素点颜色相同,则称它们在该位置具有相同的像素点。两幅图像的相似度定义为相同像素点数占总像素点数的百分比。 输入格式 第一行包含两个整数 m 和 n,表示图像的行数和列数,中间用单个空格隔开。 之后 m 行,每行 n个整数 0 或 1,表示第一幅黑白图像上各像素点的

【Python机器学习】NLP词频背后的含义——距离和相似度

我们可以使用相似度评分(和距离),根据两篇文档的表示向量间的相似度(或距离)来判断文档间有多相似。 我们可以使用相似度评分(和举例)来查看LSA主题模型与高维TF-IDF模型之间的一致性。在去掉了包含在高维词袋中的大量信息之后,LSI模型在保持这些距离方面十分出色。我们可以检查主题向量之间的距离,以及这个距离是否较好地表示文档主题之间的距离。我们想要检查意义相近的文档在新主题向量空间中彼此相近。

常用的相似度计算方法----欧式距离、曼哈顿距离、马氏距离、余弦、汉明距离、切比雪夫距离、闵可夫斯基距离、马氏距离

在深度学习以及图像搜索中,经常要对特征值进行比对,得到特征的相似度,常见的特征值比对方法有汉明距离、余弦距离、欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、马氏距离等,下面对各种比对方法分别进行介绍。 目录 1汉明距离 2余弦相似度 3欧式距离 4曼哈顿距离 5切比雪夫距离 6闵可夫斯基距离 7马氏距离 1汉明距离 汉明距离/Hamming Distance也能用来计算两

spark Word2Vec+LSH相似文本推荐(scala)

在上一篇博客,我们使用spark CountVectorizer与IDF进行了关键词提取,博客地址: spark CountVectorizer+IDF提取中文关键词(scala) 本篇博客在上一篇博客的基础上,介绍如何根据关键词获取文档的相似度,进行相似文本的推荐。在这里我们需要使用到两个算法:Word2Vec与LSH。 其中Word2Vec即将词转换为词向量,这样词之间的关系就可以向量距