【python 走进NLP】文本相似度各种距离计算

2024-09-07 06:18

本文主要是介绍【python 走进NLP】文本相似度各种距离计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算文本相似度有什么用?

1、反垃圾文本的捞取
“诚聘淘宝兼职”、“诚聘打字员”…这样的小广告满天飞,作为网站或者APP的运营者,不可能手动将所有的广告文本放入屏蔽名单里,挑几个典型广告文本,与它满足一定相似度就进行屏蔽。

2、推荐系统
在微博和各大BBS上,每一篇文章/帖子的下面都有一个推荐阅读,那就是根据一定算法计算出来的相似文章。

3、冗余过滤
我们每天接触过量的信息,信息之间存在大量的重复,相似度可以帮我们删除这些重复内容,比如,大量相似新闻的过滤筛选。

总结:
对垃圾文本(比如小广告)进行批量屏蔽;
对大量重复信息(比如新闻)进行删减;
对感兴趣的相似文章进行推荐,等等。
信息检索,搜索引擎

主要内容:

1. 余弦相似度
2. 欧氏距离

3. 曼哈顿距离
4. 切比雪夫距离
5. 杰尔德距离
6. 汉明距离
7. 标准化欧式距离
8. 皮尔逊相关系数

# -*- coding:utf-8 -*-import numpy as np
from scipy.spatial.distance import pdist# 余弦相似度
def cos_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的余弦相似度"""dist1=float(np.dot(vec1,vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)))return dist1# 欧氏距离def euc_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的欧式距离"""vec1=np.mat(vec1)vec2=np.mat(vec2)dist1=float(np.sqrt(np.sum(np.square(vec1-vec2))))return dist1# 曼哈顿距离def mah_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的曼哈顿距离"""vec1=np.mat(vec1)vec2=np.mat(vec2)dist1=float(np.sum(np.abs(vec1-vec2)))return dist1# 切比雪夫距离
def cheb_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的切比雪夫距离"""vec1=np.mat(vec1)vec2=np.mat(vec2)dist1=float(np.max(np.abs(vec1-vec2)))return dist1# 杰尔德距离
def yac_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的杰尔德距离"""Vec=np.vstack([vec1,vec2])dist1=pdist(Vec,'jaccard')return dist1[0]# 汉明距离def han_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的汉明距离"""Vec = np.vstack([vec1, vec2])dist1 = pdist(Vec, 'hamming')return dist1[0]*len(vec1)# 标准化欧式距离def se_euc_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的标准化欧式距离"""Vec = np.vstack([vec1, vec2])dist1= pdist(Vec, 'seuclidean')return dist1[0]# 皮尔逊相关系数
def corrcoef_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的皮尔逊相关系数"""Vec = np.vstack([vec1, vec2])dist1=np.corrcoef(Vec)[0][1]return dist1if __name__ == '__main__':vec1=[1,2,3,4]vec2=[5,6,7,8]dist1=cos_dist(vec1,vec2)print("余弦相似度:%s"  %dist1)dist1=euc_dist(vec1,vec2)print("欧氏距离:%s"  %dist1)dist1=mah_dist(vec1,vec2)print("曼哈顿距离:%s"  %dist1)dist1=cheb_dist(vec1,vec2)print("切比雪夫距离:%s"  %dist1)dist1=yac_dist(vec1,vec2)print("杰尔德距离:%s"  %dist1)dist1=han_dist(vec1,vec2)print("汉明距离:%s"  %dist1)dist1=se_euc_dist(vec1,vec2)print("标准化欧氏距离:%s"  %dist1)dist1=corrcoef_dist(vec1,vec2)print("皮尔逊相关系数:%s" %dist1)

运行结果:

余弦相似度:0.9688639316269662
欧氏距离:8.0
曼哈顿距离:16.0
切比雪夫距离:4.0
杰尔德距离:1.0
汉明距离:4.0
标准化欧氏距离:2.8284271247461903
皮尔逊相关系数:1.0Process finished with exit code 0

除了scipy 包可以计算距离和相似度,sklearn 包当然也可以计算相似度,更简单方便。举个余弦夹角相似度的例子。

# -*- encoding=utf-8 -*-from sklearn.metrics.pairwise import pairwise_distancesa=[[1,2,3,4],[5,6,7,8]]# 余弦夹角相似度
cosine=pairwise_distances(a,metric='cosine')
cosine_similarity=1-cosine[0,1]
print("余弦相似度:%s" % cosine_similarity)

运行结果和上面是一样的

余弦相似度:0.9688639316269662Process finished with exit code 0

这篇关于【python 走进NLP】文本相似度各种距离计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144293

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip