【python 走进NLP】文本相似度各种距离计算

2024-09-07 06:18

本文主要是介绍【python 走进NLP】文本相似度各种距离计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算文本相似度有什么用?

1、反垃圾文本的捞取
“诚聘淘宝兼职”、“诚聘打字员”…这样的小广告满天飞,作为网站或者APP的运营者,不可能手动将所有的广告文本放入屏蔽名单里,挑几个典型广告文本,与它满足一定相似度就进行屏蔽。

2、推荐系统
在微博和各大BBS上,每一篇文章/帖子的下面都有一个推荐阅读,那就是根据一定算法计算出来的相似文章。

3、冗余过滤
我们每天接触过量的信息,信息之间存在大量的重复,相似度可以帮我们删除这些重复内容,比如,大量相似新闻的过滤筛选。

总结:
对垃圾文本(比如小广告)进行批量屏蔽;
对大量重复信息(比如新闻)进行删减;
对感兴趣的相似文章进行推荐,等等。
信息检索,搜索引擎

主要内容:

1. 余弦相似度
2. 欧氏距离

3. 曼哈顿距离
4. 切比雪夫距离
5. 杰尔德距离
6. 汉明距离
7. 标准化欧式距离
8. 皮尔逊相关系数

# -*- coding:utf-8 -*-import numpy as np
from scipy.spatial.distance import pdist# 余弦相似度
def cos_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的余弦相似度"""dist1=float(np.dot(vec1,vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)))return dist1# 欧氏距离def euc_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的欧式距离"""vec1=np.mat(vec1)vec2=np.mat(vec2)dist1=float(np.sqrt(np.sum(np.square(vec1-vec2))))return dist1# 曼哈顿距离def mah_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的曼哈顿距离"""vec1=np.mat(vec1)vec2=np.mat(vec2)dist1=float(np.sum(np.abs(vec1-vec2)))return dist1# 切比雪夫距离
def cheb_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的切比雪夫距离"""vec1=np.mat(vec1)vec2=np.mat(vec2)dist1=float(np.max(np.abs(vec1-vec2)))return dist1# 杰尔德距离
def yac_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的杰尔德距离"""Vec=np.vstack([vec1,vec2])dist1=pdist(Vec,'jaccard')return dist1[0]# 汉明距离def han_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的汉明距离"""Vec = np.vstack([vec1, vec2])dist1 = pdist(Vec, 'hamming')return dist1[0]*len(vec1)# 标准化欧式距离def se_euc_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的标准化欧式距离"""Vec = np.vstack([vec1, vec2])dist1= pdist(Vec, 'seuclidean')return dist1[0]# 皮尔逊相关系数
def corrcoef_dist(vec1,vec2):""":param vec1: 向量1:param vec2: 向量2:return: 返回两个向量的皮尔逊相关系数"""Vec = np.vstack([vec1, vec2])dist1=np.corrcoef(Vec)[0][1]return dist1if __name__ == '__main__':vec1=[1,2,3,4]vec2=[5,6,7,8]dist1=cos_dist(vec1,vec2)print("余弦相似度:%s"  %dist1)dist1=euc_dist(vec1,vec2)print("欧氏距离:%s"  %dist1)dist1=mah_dist(vec1,vec2)print("曼哈顿距离:%s"  %dist1)dist1=cheb_dist(vec1,vec2)print("切比雪夫距离:%s"  %dist1)dist1=yac_dist(vec1,vec2)print("杰尔德距离:%s"  %dist1)dist1=han_dist(vec1,vec2)print("汉明距离:%s"  %dist1)dist1=se_euc_dist(vec1,vec2)print("标准化欧氏距离:%s"  %dist1)dist1=corrcoef_dist(vec1,vec2)print("皮尔逊相关系数:%s" %dist1)

运行结果:

余弦相似度:0.9688639316269662
欧氏距离:8.0
曼哈顿距离:16.0
切比雪夫距离:4.0
杰尔德距离:1.0
汉明距离:4.0
标准化欧氏距离:2.8284271247461903
皮尔逊相关系数:1.0Process finished with exit code 0

除了scipy 包可以计算距离和相似度,sklearn 包当然也可以计算相似度,更简单方便。举个余弦夹角相似度的例子。

# -*- encoding=utf-8 -*-from sklearn.metrics.pairwise import pairwise_distancesa=[[1,2,3,4],[5,6,7,8]]# 余弦夹角相似度
cosine=pairwise_distances(a,metric='cosine')
cosine_similarity=1-cosine[0,1]
print("余弦相似度:%s" % cosine_similarity)

运行结果和上面是一样的

余弦相似度:0.9688639316269662Process finished with exit code 0

这篇关于【python 走进NLP】文本相似度各种距离计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144293

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步