python实战实例:图像相似度旋转模糊处理

2024-08-31 10:52

本文主要是介绍python实战实例:图像相似度旋转模糊处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.图像相似度—题目描述

给出两幅相同大小的黑白图像(用 0−1矩阵)表示,求它们的相似度。

说明:若两幅图像在相同位置上的像素点颜色相同,则称它们在该位置具有相同的像素点。两幅图像的相似度定义为相同像素点数占总像素点数的百分比。

输入格式

第一行包含两个整数 m 和 n,表示图像的行数和列数,中间用单个空格隔开。

之后 m 行,每行 n个整数 0 或 1,表示第一幅黑白图像上各像素点的颜色。相邻两个数之间用单个空格隔开。

之后 m 行,每行 n 个整数 0 或 1,表示第二幅黑白图像上各像素点的颜色。相邻两个数之间用单个空格隔开。

输出格式

一个实数,表示相似度(以百分比的形式给出),精确到小数点后两位。

输入输出样例

输入 #1

3 3
1 0 1
0 0 1
1 1 0
1 1 0
0 0 1
0 0 1

输出 #1

44.44
m,n=map(int,input().split())
a=[[0 for _ in range(n)]for _ in range(m)]
b=[[0 for _ in range(n)]for _ in range(m)]
x=0
for i in range(m):row=input().split()for j in range(n):a[i][j]=eval(row[j])
for i in range(m):row=input().split()for j in range(n):b[i][j]=eval(row[j])
for i in range(m):for j in range(n):if a[i][j]==b[i][j]:x=x+1
print("%.2f"%(x/(m*n)*100))

解析:

  • a=[[0 for _ in range(n)]for _ in range(m)]定义一个m行n列的矩阵。
  • 输入数据给矩阵赋值。
  • 直接循环判断两个矩阵的相同的点,除以矩阵大小即得出相似度。

2.图像旋转—题目描述

输入一个 n 行 m 列的黑白图像,将它顺时针旋转 90度后输出。

输入格式

第一行包含两个整数 n 和 m,表示图像包含像素点的行数和列数。

接下来 n行,每行 m个整数,表示图像的每个像素点灰度。相邻两个整数之间用单个空格隔开。

输出格式

m 行,每行 n个整数,为顺时针旋转 90度后的图像。相邻两个整数之间用单个空格隔开。

输入输出样例

输入 #1

3 3
1 2 3
4 5 6
7 8 9

输出 #1

7 4 1
8 5 2
9 6 3
n,m=map(int,input().split())
a=[[0 for _ in range(m)]for _ in range(n)]
for i in range(n):x=input().split()for j in range(m):a[i][j]=int(x[j])
for i in range(m):for j in range(n-1,-1,-1):print(a[j][i],end=' ')print()

解析:

  • 旋转90度后矩阵元素的下标:
a[2][0] a[1][0] a[0][0]
a[2][1] a[1][1] a[0][1]
a[2][2] a[1][2] a[0][2]
  • 所以将列下标倒序输出即可。

3.图像模糊处理—题目描述

给定 n行 m列的图像各像素点的灰度值,要求用如下方法对其进行模糊化处理:

1. 四周最外侧的像素点灰度值不变;

2. 中间各像素点新灰度值为该像素点及其上下左右相邻四个像素点原灰度值的平均(舍入到最接近的整数)。

输入格式

第一行包含两个整数 n 和 m,表示图像包含像素点的行数和列数。

接下来 n 行,每行 m个整数,表示图像的每个像素点灰度。相邻两个整数之间用单个空格隔开。

输出格式

n 行,每行 m 个整数,为模糊处理后的图像。相邻两个整数之间用单个空格隔开。

输入输出样例

输入 #1

4 5
100 0 100 0 50
50 100 200 0 0
50 50 100 100 200
100 100 50 50 100

输出 #1

100 0 100 0 50
50 80 100 60 0
50 80 100 90 200
100 100 50 50 100
n,m=map(int,input().split())
a=[[0 for _ in range(m)]for _ in range(n)]
b=[[0 for _ in range(m)]for _ in range(n)]
for i in range(n):x=input().split()for j in range(m):a[i][j]=int(x[j])
for i in range(n):for j in range(m):if i==0 or i==n-1 or j==0 or j==m-1:b[i][j]=a[i][j]else:b[i][j]=round((a[i][j]+a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1])/5)
for i in range(n):for j in range(m):print(b[i][j],end=' ')print() 

 解析:

  • 定义两个矩阵,一个原矩阵,一个新矩阵。
  • 首先判断是否首行、末行、首列、末列,如果是,值不变。
  • 如果不是,求出该元素及其上下左右相邻四个像素点原灰度值的平均值覆盖原值。
  • 输出新矩阵即可。

到矩阵啦~

这篇关于python实战实例:图像相似度旋转模糊处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123704

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函