【Python机器学习】NLP词频背后的含义——距离和相似度

2024-08-31 04:44

本文主要是介绍【Python机器学习】NLP词频背后的含义——距离和相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们可以使用相似度评分(和距离),根据两篇文档的表示向量间的相似度(或距离)来判断文档间有多相似。

我们可以使用相似度评分(和举例)来查看LSA主题模型与高维TF-IDF模型之间的一致性。在去掉了包含在高维词袋中的大量信息之后,LSI模型在保持这些距离方面十分出色。我们可以检查主题向量之间的距离,以及这个距离是否较好地表示文档主题之间的距离。我们想要检查意义相近的文档在新主题向量空间中彼此相近。

LSA能够保持较大的距离,但它并不总能保持小的距离(文档之间关系的精细结构)。LSA底层的SVD算法的重点是使新主题向量空间中所有文档之间的方差最大化。

特征向量(词向量、主题向量、文档上下文向量)之间的距离驱动着NLP流水线或者任何机器学习流水线的性能。这些距离的类别如下,不同的NLP问题,可能会在其中选择较好的类别:

  • 欧几里得距离或笛卡尔距离,或均方根误差(RMSE):2范数或L_{2}
  • 平方欧几里得距离、距离平方和(SSD):L_{2}^{2}
  • 余弦、夹角或投影距离:归一化点积;
  • 闵可夫斯基:p范数或L_{p}
  • 分级距离,分级范数:p范数或L_{p}为0<p<1;
  • 城市街区距离、曼哈顿距离或出租车距离,绝对距离之和(SAD):1范数或L_{1}
  • 杰卡德距离,逆集合相似性;
  • 马哈拉诺比斯距离;
  • 莱文斯坦距离或编辑距离。

计算距离的各种方法都说明了它的重要性。除了在scikit-learn中成对距离的实现,还有许多其他的实现用于数学专业,如拓扑学、统计学、工程学等。为了便于参考,可以在下面的模块中找到举例方法:

import sklearn.metrics.pairwise
print(sklearn.metrics.pairwise._VALID_METRICS)

距离通常由相似度(分数)计算,反之亦然,因此距离与相似度得分成反比。相似度得分涉及为0到1之间。典型的距离与相似度之间的换算公式如下:

similarity=1.0/(1.0+distance)
distance=(1.0/similarity)-1.0

但是,对于0到1之间(像概率一样)的距离和相似度得分,更常用的公式如下:

similarity=1.0-distance
distance=1.0-similarity

余弦距离对于取值范围由自己的约定。两个向量之间的夹角距离通常被计算为两个向量之间最大可能的角间距(180°或pi弧度)的一个分数表示。

因此,余弦相似度与余弦距离互为倒数:

import math
angular_distance=math.acos(cosine_similarity)/math.pi
distance=1.0/similarity-1.0
similarity=1.0-distance

术语“距离”和“长度”经常与术语“度量指标”混淆,因为许多距离和长度都是有效和有用的度量指标。但不幸的是,并非所有的距离都可以称为度量指标。但是,在正式的数学和集合论文 中,度量指标有时也被称为“距离函数”或“举例度量指标”中。

这篇关于【Python机器学习】NLP词频背后的含义——距离和相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122922

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操