本文主要是介绍NLP-文本匹配-2013:DSSM【首次提出将深度学习应用到文本匹配,每个文本对象均由5层的神经网络进行向量化表示,最后通过向量间的余弦值来衡量文本对象的相似度】【釆用词袋模型,丢失单词顺序关系】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
深度语义结构模型(DSSM)首次提出了将深度学习应用到文本匹配方法中,该模型通过建模用户查询和文档的匹配度,同传统文本匹配模型相比获得了显著的提升。在深度语义结构模型中,每个文本对象均由5层的神经网络进行向量化表示,最后通过向量间的余弦值来衡量文本对象的相似度
DSSM模型由宁完全采用全连接神经网络构建,以至于参数较多,不利于模型参数的学习与优化,并且DSSM模型在获取词(片段)嵌入时釆用了词袋模型,丢失了单词间的顺序关系。B此,微软亚洲研究院进一步对模型架构提出了改进,提出了卷积深度语义结构模型CDSSM
这篇关于NLP-文本匹配-2013:DSSM【首次提出将深度学习应用到文本匹配,每个文本对象均由5层的神经网络进行向量化表示,最后通过向量间的余弦值来衡量文本对象的相似度】【釆用词袋模型,丢失单词顺序关系】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!