首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
模型专题
大模型研发全揭秘:客服工单数据标注的完整攻略
在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行
阅读更多...
Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局
夕小瑶科技说 原创 作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G
阅读更多...
Retrieval-based-Voice-Conversion-WebUI模型构建指南
一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了
阅读更多...
透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路
引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验
阅读更多...
图神经网络模型介绍(1)
我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络 谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}
阅读更多...
秋招最新大模型算法面试,熬夜都要肝完它
💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
阅读更多...
【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】
【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言
阅读更多...
AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX
上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU
阅读更多...
SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析
查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者
阅读更多...
线性因子模型 - 独立分量分析(ICA)篇
序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号
阅读更多...
【Tools】大模型中的自注意力机制
摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样 🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,
阅读更多...
MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源
项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX
阅读更多...
【Tools】大模型中的注意力机制
摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样 🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确
阅读更多...
Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)
Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa
阅读更多...
java线程深度解析(五)——并发模型(生产者-消费者)
http://blog.csdn.net/Daybreak1209/article/details/51378055 三、生产者-消费者模式 在经典的多线程模式中,生产者-消费者为多线程间协作提供了良好的解决方案。基本原理是两类线程,即若干个生产者和若干个消费者,生产者负责提交用户请求任务(到内存缓冲区),消费者线程负责处理任务(从内存缓冲区中取任务进行处理),两类线程之
阅读更多...
java线程深度解析(四)——并发模型(Master-Worker)
http://blog.csdn.net/daybreak1209/article/details/51372929 二、Master-worker ——分而治之 Master-worker常用的并行模式之一,核心思想是由两个进程协作工作,master负责接收和分配任务,worker负责处理任务,并把处理结果返回给Master进程,由Master进行汇总,返回给客
阅读更多...
Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录
Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的
阅读更多...
Go并发模型:流水线模型
Go作为一个实用主义的编程语言,非常注重性能,在语言特性上天然支持并发,Go并发模型有多种模式,通过流水线模型系列文章,你会更好的使用Go的并发特性,提高的程序性能。 这篇文章主要介绍流水线模型的流水线概念,后面文章介绍流水线模型的FAN-IN和FAN-OUT,最后介绍下如何合理的关闭流水线的协程。 Golang的并发核心思路 Golang并发核心思路是关注数据流动。数据流动的过程交给cha
阅读更多...
JavaEE应用的分层模型
不管是经典的JAVAEE架构,还是轻量级JavaEE架构,大致上都可以分为如下几层: 1、Domain Object(领域对象)层:此层由一系列的POJO(Plain Old Java Object)组成,这些对象是该系统的Domain Object,往往包含了各自所需实现的业务逻辑方法。 2、DAO(Data Access Object,数据访问对象)层:此层由一系列的DAO组件组成,这些D
阅读更多...
LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio
引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互
阅读更多...
用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)
一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: 是时间 的变量向量。 是常数向量。 是每个时间滞后的回归系数矩阵。 是误差项向量,假
阅读更多...
企业大模型落地的“最后一公里”攻略
一、大模型落地的行业现状与前景 大模型在多个行业展现出强大的应用潜力。在金融行业,沉淀了大量高质量数据,各金融平台用户数以亿计,交易数据浩如烟海。利用大模型分析处理这些数据,金融机构可以预测用户行为偏好,更高效、准确评估客户风险,实时监测交易和市场波动,及时制定策略。IDC 调研显示,超半数的金融机构计划在 2023 年投资生成式人工智能技术。 在科技领域,商汤人工智能大装置为大模型企业提
阅读更多...
【阅读文献】一个使用大语言模型的端到端语音概要
摘要 ssum框架(Speech Summarization)为了 从说话人的语音提出对应的文本二题出。 ssum面临的挑战: 控制长语音的输入捕捉 the intricate cross-mdoel mapping 在长语音输入和短文本之间。 ssum端到端模型框架 使用 Q-Former 作为 语音和文本的中介连接 ,并且使用LLMs去从语音特征正确地产生文本。 采取 multi-st
阅读更多...
多云架构下大模型训练的存储稳定性探索
一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平
阅读更多...
AI模型的未来之路:全能与专精的博弈与共生
人工智能(AI)领域正迅速发展,伴随着技术的不断进步,AI模型的应用范围也在不断扩展。当前,AI模型的设计和使用面临两个主要趋势:全能型模型和专精型模型。这两者之间的博弈与共生将塑造未来的AI技术格局。本文将从以下七个方面探讨AI模型的未来之路,并提供实用的代码示例,以助于研究人员和从业者更好地理解和应用这些技术。 一、AI模型的全面评估与比较 1.1 全能型模型 全能型AI模型旨在在多
阅读更多...
Matlab/Simulink中PMSM模型的反电动势系数和转矩系数
Matlab/Simulink中PMSM模型的反电动势系数和转矩系数_matlab pmsm-CSDN博客
阅读更多...