首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
神经网络专题
图神经网络模型介绍(1)
我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络 谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}
阅读更多...
机器学习之监督学习(三)神经网络
机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ
阅读更多...
图神经网络框架DGL实现Graph Attention Network (GAT)笔记
参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04
阅读更多...
基于深度学习 卷积神经网络resnext50的中医舌苔分类系统
项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他
阅读更多...
图神经网络(2)预备知识
1. 图的基本概念 对于接触过数据结构和算法的读者来说,图并不是一个陌生的概念。一个图由一些顶点也称为节点和连接这些顶点的边组成。给定一个图G=(V,E), 其 中V={V1,V2,…,Vn} 是一个具有 n 个顶点的集合。 1.1邻接矩阵 我们用邻接矩阵A∈Rn×n表示顶点之间的连接关系。 如果顶点 vi和vj之间有连接,就表示(vi,vj) 组成了
阅读更多...
自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算法Seq2Seq端到端神经网络算法 总结 自然语言处理系列六十三 神经网络算法》LSTM长短期记忆神经网络算法 长短期记忆网络(LSTM,Long S
阅读更多...
神经网络训练不起来怎么办(零)| General Guidance
摘要:模型性能不理想时,如何判断 Model Bias, Optimization, Overfitting 等问题,并以此着手优化模型。在这个分析过程中,我们可以对Function Set,模型弹性有直观的理解。关键词:模型性能,Model Bias, Optimization, Overfitting。 零,领域背景 如果我们的模型表现较差,那么我们往往需要根据 Training l
阅读更多...
如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南
引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构
阅读更多...
临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!
生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重
阅读更多...
回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出
回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出 目录 回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出预测效果基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型 程序设计参考资料致谢 预测效果 Matlab实现PSO-LSTM多变量回归预测 1.input和outpu
阅读更多...
基于Python的机器学习系列(29):前馈神经网络
在本篇文章中,我们将学习如何使用PyTorch构建和训练一个前馈神经网络。我们将以线性回归为例,逐步了解PyTorch的各个组件及其在神经网络中的应用。这些步骤包括: 指定输入和目标:我们将定义输入特征和目标变量。数据集和数据加载器:使用PyTorch的数据集和数据加载器来管理和加载数据。nn.Linear(全连接层):创建前馈神经网络中的线性层。定义损失函数:选择合适的损失函数
阅读更多...
【机器学习】从零开始理解深度学习——揭开神经网络的神秘面纱
1. 引言 随着技术的飞速发展,人工智能(AI)已从学术研究的实验室走向现实应用的舞台,成为推动现代社会变革的核心动力之一。而在这一进程中,深度学习(Deep Learning)因其在大规模数据处理和复杂问题求解中的卓越表现,迅速崛起为人工智能的最前沿技术。深度学习的核心是神经网络,它模仿了生物神经系统的工作原理,通过层层叠加的结构化模型,逐步从数据中学习到有用的特征,从而完成分类、识别、生
阅读更多...
【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别
1.NeuralNetwork.py #coding:utf-8import numpy as np#定义双曲函数和他们的导数def tanh(x):return np.tanh(x)def tanh_deriv(x):return 1.0 - np.tanh(x)**2def logistic(x):return 1/(1 + np.exp(-x))def logistic_derivati
阅读更多...
卷积神经网络(二)CIFAR100类别分类
一.数据介绍 总共一百个类,每个类有600个图像。每类500个训练图像,100个测试图像。没填图像都带有一个"精细"标签(它所属的类)核一个粗糙标签(它所属的超类) 二.API使用 用于构建CNN模型的API Conv2D:实现卷积,kernel_size,strides,padding,datafromat,'NHWC'核'NCHW' MaxPool2D:池化操作 impo
阅读更多...
【tensorflow 全连接神经网络】 minist 手写数字识别
主要内容: 使用tensorflow构建一个三层全连接传统神经网络,作为字符识别的多分类器。通过字符图片预测对应的数字,对mnist数据集进行预测。 # coding: utf-8from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfimport matplotlib.pyplot
阅读更多...
【python 走进NLP】从零开始搭建textCNN卷积神经网络模型
无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还
阅读更多...
OpenSNN推文:神经网络(Neural Network)相关论文最新推荐(九月份)(一)
基于卷积神经网络的活动识别分析系统及应用 论文链接:oalib简介: 活动识别技术在智能家居、运动评估和社交等领域得到广泛应用。本文设计了一种基于卷积神经网络的活动识别分析与应用系统,通过分析基于Android搭建的前端采所集的三向加速度传感器数据,对用户的当前活动进行识别。实验表明活动识别准确率满足了应用需求。本文基于识别的活动进行卡路里消耗计算,根据用户具体的活动、时间以及体重计算出相应活
阅读更多...
线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
文章目录 1. ImageNet2. 卷积计算2.1 两个多项式卷积2.2 函数卷积2.3 循环卷积 3. 周期循环矩阵和非周期循环矩阵4. 循环卷积特征值4.1 卷积计算的分解4.2 运算量4.3 二维卷积公式 5. Kronecker Product 1. ImageNet ImageNet 的论文paper链接如下:详细请直接阅读相关论文即可 通过网盘分享的文件:image
阅读更多...
神经网络多分类任务的损失函数——交叉熵
神经网络多分类任务的损失函数——交叉熵 神经网络解决多分类问题最常用的方法是设置n个输出节点,其中n为类别的个数。对于每一个样例,神经网络可以得到的一个n维数组作为输出结果。数组中的每一个维度(也就是每一个输出节点)对应一个类别。在理想情况下,如果一个样本属于类别k,那么这个类别所对应的输出节点的输出值应该为1,而其他节点的输出都为0。 以识别手写数字为例,0~9共十个类别。识别数字1,神经网
阅读更多...
选取训练神经网络时的Batch size ,BatchNorm
BatchNorm 优点:对于隐藏层的每一层输入,因为经过激活函数的处理,可能会趋向于大的正值和负值,容易出现梯度下降和梯度消失。所以强行拉回到服从均值为0,方差为1的标准正态分布,避免过拟合 缺点:正是因为这种强行改变分布的手段,使得隐层输入和原始数据分布差异太大,如果数据量不大时,容易欠拟合。可能不用更好一些 https://www.zhihu.com/search?type=conte
阅读更多...
深度学习示例2-多输入多输出的神经网络模型
一、代码示例 from tensorflow import kerasfrom tensorflow.keras import layersimport numpy as np# 定义 多输入 多输出的模型vocabulary_size = 1000num_tags = 100num_departments = 4title = keras.Input(shape=(vocabul
阅读更多...
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10
目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课
阅读更多...
图神经网络-DeepWalk
论文地址:https://arxiv.org/pdf/1403.6652.pdf发表会议:KDD2014 这篇论文是基于embedding的同质图网络节点表示学习的开山之作。 文章目录 目的动机方法实验不足 目的 给定一个图,返回节点的embedding表示,节点的embedding表示嵌入了图的结构信息。 动机 图通常是很大的,直接对全图进行表示学习是不现实的。
阅读更多...
卷积神经网络综述
摘要 本文对卷积神经网络(Convolutional Neural Network,CNN)进行了全面综述。首先介绍了卷积神经网络的发展历程,包括早期的理论基础和关键突破。接着详细阐述了卷积神经网络的结构组成,包括卷积层、池化层、全连接层等,分析了各层的作用和特点。然后探讨了卷积神经网络在图像识别、目标检测、语义分割等多个领域的应用,并介绍了一些典型的应用案例。此外,还讨论了卷积神经网络的训练方
阅读更多...
pytorch pyro 贝叶斯神经网络 bnn beyesean neure network svi 定制SVI目标和培训循环,变更推理
定制SVI目标和培训循环¶ Pyro支持各种基于优化的贝叶斯推理方法,包括Trace_ELBO作为SVI(随机变分推理)的基本实现。参见文件(documents的简写)有关各种SVI实现和SVI教程的更多信息I, 二,以及罗马数字3了解SVI的背景。 在本教程中,我们将展示高级用户如何修改和/或增加变分目标(或者:损失函数)以及由Pyro提供的训练步骤实现,以支持特殊的用例。 基本SVI用
阅读更多...
图神经网络(三)----结点分类问题
本篇文章将逐步记录自己针对图神经网络处理结点分类的相关Papers。 一、Paers 1、时间:2020年3月 Benchmarking Graph Neural Networks【Paper】【Code】 【导读】Bengio等人提出一个图神经网络的基准框架。 2、 时间:2020年3月 N-GCN: Multi-scale Graph Convolution for Semi
阅读更多...