图神经网络框架DGL实现Graph Attention Network (GAT)笔记

2024-09-08 09:18

本文主要是介绍图神经网络框架DGL实现Graph Attention Network (GAT)笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考列表:

[1]深入理解图注意力机制
[2]DGL官方学习教程一 ——基础操作&消息传递
[3]Cora数据集介绍+python读取

一、DGL实现GAT分类机器学习论文

程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3])
在这里插入图片描述

1. 程序

Ubuntu:18.04
cuda:11.1
cudnn:8.0.4.30
pytorch:1.7.0
networkx:2.5

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as npclass GATLayer(nn.Module):def __init__(self, g, in_dim, out_dim):super(GATLayer, self).__init__()self.g = gself.fc = nn.Linear(in_dim, out_dim, bias=False)self.attn_fc = nn.Linear(2 * out_dim, 1, bias=False)def edge_attention(self, edges):z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)a = self.attn_fc(z2)return {'e' : F.leaky_relu(a)}def message_func(self, edges):return {'z' : edges.src['z'], 'e' : edges.data['e']}def reduce_func(self, nodes):alpha = F.softmax(nodes.mailbox['e'], dim=1)h = torch.sum(alpha * nodes.mailbox['z'], dim=1)return {'h' : h}def forward(self, h):z = self.fc(h) # eq. 1self.g.ndata['z'] = z self.g.apply_edges(self.edge_attention) # eq. 2self.g.update_all(self.message_func, self.reduce_func) # eq. 3 and 4return self.g.ndata.pop('h')class MultiHeadGATLayer(nn.Module):def __init__(self, g, in_dim, out_dim, num_heads, merge='cat'):super(MultiHeadGATLayer, self).__init__()self.heads = nn.ModuleList()for i in range(num_heads):self.heads.append(GATLayer(g, in_dim, out_dim))self.merge = mergedef forward(self, h):head_outs = [attn_head(h) for attn_head in self.heads]if self.merge == 'cat':return torch.cat(head_outs, dim=1)else:return torch.mean(torch.stack(head_outs))class GAT(nn.Module):def __init__(self, g, in_dim, hidden_dim, out_dim, num_heads):super(GAT, self).__init__()self.layer1 = MultiHeadGATLayer(g, in_dim, hidden_dim, num_heads)self.layer2 = MultiHeadGATLayer(g, hidden_dim * num_heads, out_dim, 1)def forward(self, h):h = self.layer1(h)h = F.elu(h)h = self.layer2(h)return hfrom dgl import DGLGraph
from dgl.data import citation_graph as citegrhdef load_core_data():data = citegrh.load_cora()features = torch.FloatTensor(data.features)labels = torch.LongTensor(data.labels)mask = torch.ByteTensor(data.train_mask)g = DGLGraph(data.graph)return g, features, labels, maskimport time 
import numpy as np
g, features, labels, mask = load_core_data()net = GAT(g, in_dim = features.size()[1], hidden_dim=8, out_dim=7, num_heads=8)optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
dur = []
for epoch in range(300):if epoch >= 3:t0 = time.time()logits = net(features)logp = F.log_softmax(logits, 1)loss = F.nll_loss(logp[mask], labels[mask])optimizer.zero_grad()loss.backward()optimizer.step()if epoch >= 3:dur.append(time.time() - t0)print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f}".format(epoch, loss.item(), np.mean(dur)))
2.笔记
2.1 初始化一个graph的两种方式

对于如下图数据结构:
0->1
1->2
3->1

多称之为小括号方式

import networkx as nx
import matplotlib.pyplot as plt
import dgl
import torch
%matplotlib inline
g = dgl.graph((torch.tensor([0, 1, 3]), torch.tensor([1, 2, 1]))) # 小括号
nx.draw(g.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]])  #使用nx绘制,设置节点大小及灰度值
plt.show()

在这里插入图片描述
或中括号方式:

import networkx as nx
import matplotlib.pyplot as plt
import dgl
import torch
%matplotlib inline
g = dgl.graph([torch.tensor([0, 1]), torch.tensor([1, 2]), torch.tensor([3, 1])]) # 中括号
nx.draw(g.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]])  #使用nx绘制,设置节点大小及灰度值
plt.show()

在这里插入图片描述
note: 同一个graph,每次打印出来的各节点的位置是随机的。

2.2 DGL的update_all函数实际工作过程

利用如下例程说明:

import networkx as nx
import matplotlib.pyplot as plt
import torch
import dglN = 100  # number of nodes
DAMP = 0.85  # damping factor阻尼因子
K = 10  # number of iterations
g = nx.nx.erdos_renyi_graph(N, 0.1) #图随机生成器,生成nx图
g = dgl.DGLGraph(g)                 #转换成DGL图
g.ndata['pv'] = torch.ones(N) / N  #初始化PageRank值
g.ndata['deg'] = g.in_degrees(g.nodes()).float()  #初始化节点特征
print(g.ndata['deg'])
#定义message函数,它将每个节点的PageRank值除以其out-degree,并将结果作为消息传递给它的邻居:
def pagerank_message_func(edges):return {'pv' : edges.src['pv'] / edges.src['deg']}
#定义reduce函数,它从mailbox中删除并聚合message,并计算其新的PageRank值:
def pagerank_reduce_func(nodes):print("-batch size--pv size-------------")print(nodes.batch_size(), nodes.mailbox['pv'].size())msgs = torch.sum(nodes.mailbox['pv'], dim=1)pv = (1 - DAMP) / N + DAMP * msgsreturn {'pv' : pv}
g.update_all(pagerank_message_func, pagerank_reduce_func)

打印g.ndata[‘deg’]信息(也即每个节点的入度信息)如下:

tensor([ 9., 7., 17., 10., 12., 13., 13., 9., 5., 14., 7., 12., 15., 6.,
15., 7., 13., 7., 11., 9., 9., 15., 9., 12., 10., 8., 10., 9.,
15., 7., 8., 10., 10., 8., 11., 13., 6., 10., 10., 11., 5., 13.,
6., 12., 12., 8., 6., 11., 9., 10., 12., 8., 11., 5., 7., 12.,
4., 7., 8., 13., 11., 14., 9., 10., 12., 10., 10., 9., 10., 13.,
7., 15., 15., 10., 6., 11., 4., 6., 5., 10., 9., 11., 19., 9.,
12., 13., 15., 12., 12., 11., 10., 8., 11., 9., 7., 7., 11., 3.,
10., 5.])

pagerank_reduce_func函数内的打印信息如下:

-batch size–pv size-------------
1 torch.Size([1, 3])
-batch size–pv size-------------
2 torch.Size([2, 4])
-batch size–pv size-------------
5 torch.Size([5, 5])
-batch size–pv size-------------
6 torch.Size([6, 6])
-batch size–pv size-------------
10 torch.Size([10, 7])
-batch size–pv size-------------
7 torch.Size([7, 8])
-batch size–pv size-------------
12 torch.Size([12, 9])
-batch size–pv size-------------
16 torch.Size([16, 10])
-batch size–pv size-------------
11 torch.Size([11, 11])
-batch size–pv size-------------
11 torch.Size([11, 12])
-batch size–pv size-------------
8 torch.Size([8, 13])
-batch size–pv size-------------
2 torch.Size([2, 14])
-batch size–pv size-------------
7 torch.Size([7, 15])
-batch size–pv size-------------
1 torch.Size([1, 17])
-batch size–pv size-------------
1 torch.Size([1, 19])

入度为3的节点只有一个,入度为4的节点有两个,入度为5的节点五个,…

对比图的入度信息与pagerank_reduce_func函数内的打印信息,我们发现:入度为3的节点只有一个,入度为4的节点有两个,入度为5的节点五个,…因此,得出:
1)函数update_all并不是将所有节点一起更新;
2)函数update_all将具有同等个数目标节点的节点放在一起更新,形成一个batch,这也是为什么reduce_func(nodes)中的入参中的入参type为dgl.udf.NodeBatch的原因。reduce_func(nodes)中的入参nodes的不同行代表与不同节点相关的数据。

这篇关于图神经网络框架DGL实现Graph Attention Network (GAT)笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147712

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学