【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别

2024-09-07 07:08

本文主要是介绍【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.NeuralNetwork.py

#coding:utf-8import numpy as np#定义双曲函数和他们的导数
def tanh(x):return np.tanh(x)def tanh_deriv(x):return 1.0 - np.tanh(x)**2def logistic(x):return 1/(1 + np.exp(-x))def logistic_derivative(x):return logistic(x)*(1-logistic(x))#定义NeuralNetwork 神经网络算法
class NeuralNetwork:#初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元def __init__(self, layers, activation='tanh'):""":param layers: A list containing the number of units in each layer.Should be at least two values:param activation: The activation function to be used. Can be"logistic" or "tanh""""if activation == 'logistic':self.activation = logisticself.activation_deriv = logistic_derivativeelif activation == 'tanh':self.activation = tanhself.activation_deriv = tanh_derivself.weights = []#循环从1开始,相当于以第二层为基准,进行权重的初始化for i in range(1, len(layers) - 1):#对当前神经节点的前驱赋值self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)#对当前神经节点的后继赋值self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)#训练函数   ,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率,# epochs,表示抽样的方法对神经网络进行更新的最大次数def fit(self, X, y, learning_rate=0.2, epochs=10000):X = np.atleast_2d(X) #确定X至少是二维的数据temp = np.ones([X.shape[0], X.shape[1]+1]) #初始化矩阵temp[:, 0:-1] = X  # adding the bias unit to the input layerX = tempy = np.array(y) #把list转换成array的形式for k in range(epochs):#随机选取一行,对神经网络进行更新i = np.random.randint(X.shape[0])a = [X[i]]#完成所有正向的更新for l in range(len(self.weights)):a.append(self.activation(np.dot(a[l], self.weights[l])))#error = y[i] - a[-1]deltas = [error * self.activation_deriv(a[-1])]#开始反向计算误差,更新权重for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layerdeltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))deltas.reverse()for i in range(len(self.weights)):layer = np.atleast_2d(a[i])delta = np.atleast_2d(deltas[i])self.weights[i] += learning_rate * layer.T.dot(delta)#预测函数def predict(self, x):x = np.array(x)temp = np.ones(x.shape[0]+1)temp[0:-1] = xa = tempfor l in range(0, len(self.weights)):a = self.activation(np.dot(a, self.weights[l]))return a

2、基于NeuralNetwork的手写数字识别

#-*-coding:utf-8-*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import LabelBinarizer
from NeuralNetwork import NeuralNetwork
from sklearn.cross_validation import train_test_splitdigits = load_digits()
X = digits.data
y = digits.target
X -= X.min() # normalize the values to bring them into the range 0-1
X /= X.max()###############################训练模型########################
nn = NeuralNetwork([64,100,10],'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print "start fitting"
nn.fit(X_train,labels_train,epochs=3000)###############预测结果###############################
predictions = []
for i in range(X_test.shape[0]):o = nn.predict(X_test[i] )predictions.append(np.argmax(o))###############混淆矩阵#####################################
print confusion_matrix(y_test,predictions)
print classification_report(y_test,predictions)#################打印预测结果#####################
# for each in predictions:
#     print each# for each in y_test:
#     print each

3、运行结果:


start fitting
[[44  0  0  0  0  0  0  0  0  0][ 0 44  0  0  0  1  0  0  2  0][ 0  1 39  0  0  0  0  0  0  0][ 0  1  0 49  0  0  0  2  2  0][ 0  2  0  0 34  0  0  2  1  0][ 0  2  0  0  1 44  1  0  0  3][ 1  2  0  0  0  0 43  0  0  0][ 0  0  0  0  0  0  0 41  0  0][ 0  4  0  0  0  1  0  1 31  2][ 0  4  0  0  0  0  0  1  1 43]]precision    recall  f1-score   support0       0.98      1.00      0.99        441       0.73      0.94      0.82        472       1.00      0.97      0.99        403       1.00      0.91      0.95        544       0.97      0.87      0.92        395       0.96      0.86      0.91        516       0.98      0.93      0.96        467       0.87      1.00      0.93        418       0.84      0.79      0.82        399       0.90      0.88      0.89        49avg / total       0.92      0.92      0.92       450Process finished with exit code 0

这篇关于【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144396

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分