【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别

2024-09-07 07:08

本文主要是介绍【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.NeuralNetwork.py

#coding:utf-8import numpy as np#定义双曲函数和他们的导数
def tanh(x):return np.tanh(x)def tanh_deriv(x):return 1.0 - np.tanh(x)**2def logistic(x):return 1/(1 + np.exp(-x))def logistic_derivative(x):return logistic(x)*(1-logistic(x))#定义NeuralNetwork 神经网络算法
class NeuralNetwork:#初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元def __init__(self, layers, activation='tanh'):""":param layers: A list containing the number of units in each layer.Should be at least two values:param activation: The activation function to be used. Can be"logistic" or "tanh""""if activation == 'logistic':self.activation = logisticself.activation_deriv = logistic_derivativeelif activation == 'tanh':self.activation = tanhself.activation_deriv = tanh_derivself.weights = []#循环从1开始,相当于以第二层为基准,进行权重的初始化for i in range(1, len(layers) - 1):#对当前神经节点的前驱赋值self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)#对当前神经节点的后继赋值self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)#训练函数   ,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率,# epochs,表示抽样的方法对神经网络进行更新的最大次数def fit(self, X, y, learning_rate=0.2, epochs=10000):X = np.atleast_2d(X) #确定X至少是二维的数据temp = np.ones([X.shape[0], X.shape[1]+1]) #初始化矩阵temp[:, 0:-1] = X  # adding the bias unit to the input layerX = tempy = np.array(y) #把list转换成array的形式for k in range(epochs):#随机选取一行,对神经网络进行更新i = np.random.randint(X.shape[0])a = [X[i]]#完成所有正向的更新for l in range(len(self.weights)):a.append(self.activation(np.dot(a[l], self.weights[l])))#error = y[i] - a[-1]deltas = [error * self.activation_deriv(a[-1])]#开始反向计算误差,更新权重for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layerdeltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))deltas.reverse()for i in range(len(self.weights)):layer = np.atleast_2d(a[i])delta = np.atleast_2d(deltas[i])self.weights[i] += learning_rate * layer.T.dot(delta)#预测函数def predict(self, x):x = np.array(x)temp = np.ones(x.shape[0]+1)temp[0:-1] = xa = tempfor l in range(0, len(self.weights)):a = self.activation(np.dot(a, self.weights[l]))return a

2、基于NeuralNetwork的手写数字识别

#-*-coding:utf-8-*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import LabelBinarizer
from NeuralNetwork import NeuralNetwork
from sklearn.cross_validation import train_test_splitdigits = load_digits()
X = digits.data
y = digits.target
X -= X.min() # normalize the values to bring them into the range 0-1
X /= X.max()###############################训练模型########################
nn = NeuralNetwork([64,100,10],'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print "start fitting"
nn.fit(X_train,labels_train,epochs=3000)###############预测结果###############################
predictions = []
for i in range(X_test.shape[0]):o = nn.predict(X_test[i] )predictions.append(np.argmax(o))###############混淆矩阵#####################################
print confusion_matrix(y_test,predictions)
print classification_report(y_test,predictions)#################打印预测结果#####################
# for each in predictions:
#     print each# for each in y_test:
#     print each

3、运行结果:


start fitting
[[44  0  0  0  0  0  0  0  0  0][ 0 44  0  0  0  1  0  0  2  0][ 0  1 39  0  0  0  0  0  0  0][ 0  1  0 49  0  0  0  2  2  0][ 0  2  0  0 34  0  0  2  1  0][ 0  2  0  0  1 44  1  0  0  3][ 1  2  0  0  0  0 43  0  0  0][ 0  0  0  0  0  0  0 41  0  0][ 0  4  0  0  0  1  0  1 31  2][ 0  4  0  0  0  0  0  1  1 43]]precision    recall  f1-score   support0       0.98      1.00      0.99        441       0.73      0.94      0.82        472       1.00      0.97      0.99        403       1.00      0.91      0.95        544       0.97      0.87      0.92        395       0.96      0.86      0.91        516       0.98      0.93      0.96        467       0.87      1.00      0.93        418       0.84      0.79      0.82        399       0.90      0.88      0.89        49avg / total       0.92      0.92      0.92       450Process finished with exit code 0

这篇关于【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144396

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi