【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别

2024-09-07 07:08

本文主要是介绍【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.NeuralNetwork.py

#coding:utf-8import numpy as np#定义双曲函数和他们的导数
def tanh(x):return np.tanh(x)def tanh_deriv(x):return 1.0 - np.tanh(x)**2def logistic(x):return 1/(1 + np.exp(-x))def logistic_derivative(x):return logistic(x)*(1-logistic(x))#定义NeuralNetwork 神经网络算法
class NeuralNetwork:#初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元def __init__(self, layers, activation='tanh'):""":param layers: A list containing the number of units in each layer.Should be at least two values:param activation: The activation function to be used. Can be"logistic" or "tanh""""if activation == 'logistic':self.activation = logisticself.activation_deriv = logistic_derivativeelif activation == 'tanh':self.activation = tanhself.activation_deriv = tanh_derivself.weights = []#循环从1开始,相当于以第二层为基准,进行权重的初始化for i in range(1, len(layers) - 1):#对当前神经节点的前驱赋值self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)#对当前神经节点的后继赋值self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)#训练函数   ,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率,# epochs,表示抽样的方法对神经网络进行更新的最大次数def fit(self, X, y, learning_rate=0.2, epochs=10000):X = np.atleast_2d(X) #确定X至少是二维的数据temp = np.ones([X.shape[0], X.shape[1]+1]) #初始化矩阵temp[:, 0:-1] = X  # adding the bias unit to the input layerX = tempy = np.array(y) #把list转换成array的形式for k in range(epochs):#随机选取一行,对神经网络进行更新i = np.random.randint(X.shape[0])a = [X[i]]#完成所有正向的更新for l in range(len(self.weights)):a.append(self.activation(np.dot(a[l], self.weights[l])))#error = y[i] - a[-1]deltas = [error * self.activation_deriv(a[-1])]#开始反向计算误差,更新权重for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layerdeltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))deltas.reverse()for i in range(len(self.weights)):layer = np.atleast_2d(a[i])delta = np.atleast_2d(deltas[i])self.weights[i] += learning_rate * layer.T.dot(delta)#预测函数def predict(self, x):x = np.array(x)temp = np.ones(x.shape[0]+1)temp[0:-1] = xa = tempfor l in range(0, len(self.weights)):a = self.activation(np.dot(a, self.weights[l]))return a

2、基于NeuralNetwork的手写数字识别

#-*-coding:utf-8-*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import LabelBinarizer
from NeuralNetwork import NeuralNetwork
from sklearn.cross_validation import train_test_splitdigits = load_digits()
X = digits.data
y = digits.target
X -= X.min() # normalize the values to bring them into the range 0-1
X /= X.max()###############################训练模型########################
nn = NeuralNetwork([64,100,10],'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print "start fitting"
nn.fit(X_train,labels_train,epochs=3000)###############预测结果###############################
predictions = []
for i in range(X_test.shape[0]):o = nn.predict(X_test[i] )predictions.append(np.argmax(o))###############混淆矩阵#####################################
print confusion_matrix(y_test,predictions)
print classification_report(y_test,predictions)#################打印预测结果#####################
# for each in predictions:
#     print each# for each in y_test:
#     print each

3、运行结果:


start fitting
[[44  0  0  0  0  0  0  0  0  0][ 0 44  0  0  0  1  0  0  2  0][ 0  1 39  0  0  0  0  0  0  0][ 0  1  0 49  0  0  0  2  2  0][ 0  2  0  0 34  0  0  2  1  0][ 0  2  0  0  1 44  1  0  0  3][ 1  2  0  0  0  0 43  0  0  0][ 0  0  0  0  0  0  0 41  0  0][ 0  4  0  0  0  1  0  1 31  2][ 0  4  0  0  0  0  0  1  1 43]]precision    recall  f1-score   support0       0.98      1.00      0.99        441       0.73      0.94      0.82        472       1.00      0.97      0.99        403       1.00      0.91      0.95        544       0.97      0.87      0.92        395       0.96      0.86      0.91        516       0.98      0.93      0.96        467       0.87      1.00      0.93        418       0.84      0.79      0.82        399       0.90      0.88      0.89        49avg / total       0.92      0.92      0.92       450Process finished with exit code 0

这篇关于【DL--22】实现神经网络算法NeuralNetwork以及手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144396

相关文章

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin