基于Python的机器学习系列(29):前馈神经网络

2024-09-07 07:52

本文主要是介绍基于Python的机器学习系列(29):前馈神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在本篇文章中,我们将学习如何使用PyTorch构建和训练一个前馈神经网络。我们将以线性回归为例,逐步了解PyTorch的各个组件及其在神经网络中的应用。这些步骤包括:

  1. 指定输入和目标:我们将定义输入特征和目标变量。
  2. 数据集和数据加载器:使用PyTorch的数据集和数据加载器来管理和加载数据。
  3. nn.Linear(全连接层):创建前馈神经网络中的线性层。
  4. 定义损失函数:选择合适的损失函数来评估模型的性能。
  5. 定义优化器:选择优化器来更新模型的权重。
  6. 训练模型:通过训练过程来优化模型参数。

1. 指定输入和目标

        首先,我们需要定义输入特征和目标变量。考虑以下示例数据:

import torch
import numpy as np# Input (temperature, rainfall, humidity)
x_train = np.array([[73, 67, 43], [91, 88, 64], [87, 134, 58], [88, 120, 50]])
# Targets (apple yield, orange yield)
y_train = np.array([[140, 155], [150, 180], [160, 190], [170, 200]])

2. 数据集和数据加载器

        我们将使用PyTorch的数据集和数据加载器将数据转换为张量,并加载到模型中:

from torch.utils.data import TensorDataset, DataLoader# Convert numpy arrays to PyTorch tensors
X_train = torch.tensor(x_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32)# Create a TensorDataset and DataLoader
train_dataset = TensorDataset(X_train, y_train)
train_loader = DataLoader(dataset=train_dataset, batch_size=2, shuffle=True)

3. nn.Linear(全连接层)

        我们使用nn.Linear来创建线性层。这个层将输入特征映射到目标变量的预测值:

import torch.nn as nnclass LinearRegressionModel(nn.Module):def __init__(self):super(LinearRegressionModel, self).__init__()self.fc1 = nn.Linear(3, 2)  # 3 input features, 2 output featuresdef forward(self, x):return self.fc1(x)model = LinearRegressionModel()

4. 定义损失函数

        选择合适的损失函数来计算预测值和真实值之间的差距。我们使用均方误差(MSE)损失函数:

criterion = nn.MSELoss()

5. 定义优化器

        选择优化器来更新模型的权重。我们使用随机梯度下降(SGD)优化器:

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

6. 训练模型

        最后,我们通过训练过程来优化模型参数:

num_epochs = 1000for epoch in range(num_epochs):for inputs, targets in train_loader:# Forward passoutputs = model(inputs)loss = criterion(outputs, targets)# Backward pass and optimizationoptimizer.zero_grad()loss.backward()optimizer.step()if (epoch+1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

结语

        在本篇文章中,我们深入探讨了如何使用PyTorch构建一个前馈神经网络,并以线性回归为案例进行讲解。我们涵盖了从数据准备到模型训练的各个环节,包括指定输入和目标、使用数据集和数据加载器、定义线性层、选择损失函数和优化器。通过这些步骤,我们能够有效地利用PyTorch的强大功能来实现和训练神经网络。掌握这些基础知识将为我们进一步探索更复杂的深度学习模型奠定坚实的基础。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(29):前馈神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144500

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss