线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则

本文主要是介绍线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. ImageNet
  • 2. 卷积计算
    • 2.1 两个多项式卷积
    • 2.2 函数卷积
    • 2.3 循环卷积
  • 3. 周期循环矩阵和非周期循环矩阵
  • 4. 循环卷积特征值
    • 4.1 卷积计算的分解
    • 4.2 运算量
    • 4.3 二维卷积公式
  • 5. Kronecker Product

1. ImageNet

ImageNet 的论文paper链接如下:详细请直接阅读相关论文即可
通过网盘分享的文件:imagenet_cvpr09.pdf
链接: https://pan.baidu.com/s/1Rkb6S5RbCHZUBrgUCIv0FA?pwd=6ffn 提取码: 6ffn

  • 涉及到的知识点:
    – drop-out–防止神经网络过拟合
    – 正则化-- 方便数据训练

2. 卷积计算

2.1 两个多项式卷积

教授讲得通用公式听起来糊里糊涂的,就以简单的实际案例来解释吧!
假设我们有两个多项式表示如下:
P ( x ) = 1 + 2 x + 3 x 2 ; Q ( x ) = 4 + 5 x ; H ( x ) = P ( x ) Q ( x ) \begin{equation} P(x)=1+2x+3x^2;Q(x)=4+5x;H(x)=P(x)Q(x) \end{equation} P(x)=1+2x+3x2;Q(x)=4+5x;H(x)=P(x)Q(x)

  • 两个多项式相乘后展开可得结果如下:
    P ( x ) = 1 + 2 x + 3 x 2 ; Q ( x ) = 4 + 5 x ; H ( x ) = P ( x ) Q ( x ) \begin{equation} P(x)=1+2x+3x^2;Q(x)=4+5x;H(x)=P(x)Q(x) \end{equation} P(x)=1+2x+3x2;Q(x)=4+5x;H(x)=P(x)Q(x)
    H ( x ) = 4 + 13 x + 22 x 2 + 15 x 3 \begin{equation} H(x)=4+13x+22x^2+15x^3 \end{equation} H(x)=4+13x+22x2+15x3
  • 那么我们是否可以根据卷积的形式直接算出来了?
    P ( x ) : p = [ 1 , 2 , 3 ] , Q ( x ) : q = [ 4 , 5 , 0 ] \begin{equation} P(x):p=[1,2,3],Q(x):q=[4,5,0] \end{equation} P(x):p=[1,2,3],Q(x):q=[4,5,0]
  • 那么两个序列卷积如下 ,可得,
    多项式的乘积等同于其系数的卷积,多项式乘法可以看作是序列卷积的一个具体应用
    在这里插入图片描述

2.2 函数卷积

函数卷积定义:若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)有界且可积,以为函数卷积连续形式如下:
K ( x ) = f ( x ) ∗ g ( x ) = ∫ − ∞ + ∞ f ( t ) g ( x − t ) d t \begin{equation} K(x)=f(x)*g(x)=\int_{-\infty}^{+\infty}f(t)g(x-t)\mathrm{dt} \end{equation} K(x)=f(x)g(x)=+f(t)g(xt)dt

2.3 循环卷积

具体参考上节笔记
线性代数|机器学习-P32循环矩阵的特征向量-傅里叶矩阵

3. 周期循环矩阵和非周期循环矩阵

  • Toeplitz Matrix :
    对于非周期循环矩阵来说,我们用托普利兹矩阵Toeplitz Matrix 表示,主要特点为斜对角值相等,但不循环
  • Circulant Matrix;
    对于周期循环矩阵来说,我们用循环矩阵Circulant Matrix 表示,主要特点为斜对角值相等,并且元素循环,也是循环卷积矩阵,根据上节课学习可得,任意一个循环卷积矩阵C都可以是位移矩阵P的线性组合,并且矩阵P的特征向量为傅里叶矩阵。

在这里插入图片描述

  • 周期循环矩阵C的特征向量为傅里叶矩阵,以4阶举例可得:
    C = c 0 + c 1 P + c 2 P 2 + c 3 P 3 , P = [ 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 ] ; F 4 = [ 1 1 1 1 1 i i 2 i 3 1 i 2 i 4 i 6 1 i 3 i 6 i 9 ] \begin{equation} C=c_0+c_1P+c_2P^2+c_3P^3, P=\begin{bmatrix} 0&1&0&0\\\\ 0&0&1&0\\\\ 0&0&0&1\\\\ 1&0&0&0\end{bmatrix};F_4=\begin{bmatrix} 1&1&1&1\\\\ 1&i&i^2&i^3\\\\ 1&i^2&i^4&i^6\\\\ 1&i^3&i^6&i^9\end{bmatrix} \end{equation} C=c0+c1P+c2P2+c3P3,P= 0001100001000010 ;F4= 11111ii2i31i2i4i61i3i6i9
  • 循环矩阵C的特征值可以用傅里叶F表示:
    在这里插入图片描述

4. 循环卷积特征值

4.1 卷积计算的分解

在这里插入图片描述

  • 我们定义矩阵如下:
    C = [ c 0 c 1 c 1 c 0 ] ; D = [ d 0 d 1 d 1 d 0 ] ; F = [ 1 1 1 − 1 ] \begin{equation} C=\begin{bmatrix} c_0&c_1\\\\ c_1&c_0 \end{bmatrix};D=\begin{bmatrix} d_0&d_1\\\\ d_1&d_0 \end{bmatrix};F=\begin{bmatrix} 1&1\\\\ 1&-1 \end{bmatrix} \end{equation} C= c0c1c1c0 ;D= d0d1d1d0 ;F= 1111
    F c = [ c 0 + c 1 c 0 − c 1 ] ; F d = [ d 0 + d 1 d 0 − d 1 ] ; \begin{equation} Fc=\begin{bmatrix} c_0+c_1\\\\ c_0-c_1 \end{bmatrix};Fd=\begin{bmatrix} d_0+d_1\\\\ d_0-d_1 \end{bmatrix};\end{equation} Fc= c0+c1c0c1 ;Fd= d0+d1d0d1 ;
    ( F c ) . ∗ ( F d ) = [ ( c 0 + c 1 ) ( d 0 + d 1 ) ( c 0 − c 1 ) ( d 0 − d 1 ) ] = [ c 0 d 0 + c 0 d 1 + c 1 d 0 + c 1 d 1 c 0 d 0 − c 0 d 1 − c 1 d 0 + c 1 d 1 ] ; \begin{equation} (Fc).* (Fd)=\begin{bmatrix} (c_0+c_1)(d_0+d_1)\\\\ (c_0-c_1)(d_0-d_1) \end{bmatrix}=\begin{bmatrix} c_0d_0+c_0d_1+c_1d_0+c_1d_1\\\\ c_0d_0-c_0d_1-c_1d_0+c_1d_1 \end{bmatrix};\end{equation} (Fc).(Fd)= (c0+c1)(d0+d1)(c0c1)(d0d1) = c0d0+c0d1+c1d0+c1d1c0d0c0d1c1d0+c1d1 ;
    c ⊗ d = [ c 0 c 1 c 1 c 0 ] [ d 0 d 1 ] = [ c 0 d 0 + c 1 d 1 c 1 d 0 + c 0 d 1 ] ; \begin{equation} c\otimes d=\begin{bmatrix} c_0&c_1\\\\c_1&c_0 \end{bmatrix}\begin{bmatrix} d_0\\\\d_1 \end{bmatrix}=\begin{bmatrix} c_0d_0+c_1d_1\\\\c_1d_0+c_0d_1 \end{bmatrix};\end{equation} cd= c0c1c1c0 d0d1 = c0d0+c1d1c1d0+c0d1 ;
    F ( c ⊗ d ) = [ 1 1 1 − 1 ] [ c 0 d 0 + c 1 d 1 c 1 d 0 + c 0 d 1 ] = [ c 0 d 0 + c 1 d 1 + c 1 d 0 + c 0 d 1 c 0 d 0 + c 1 d 1 − c 1 d 0 − c 0 d 1 ] ; \begin{equation} F(c\otimes d)=\begin{bmatrix} 1&1\\\\1&-1 \end{bmatrix}\begin{bmatrix} c_0d_0+c_1d_1\\\\c_1d_0+c_0d_1 \end{bmatrix}=\begin{bmatrix} c_0d_0+c_1d_1+c_1d_0+c_0d_1\\\\c_0d_0+c_1d_1-c_1d_0-c_0d_1 \end{bmatrix};\end{equation} F(cd)= 1111 c0d0+c1d1c1d0+c0d1 = c0d0+c1d1+c1d0+c0d1c0d0+c1d1c1d0c0d1 ;
  • 小结卷积规则如下:

在这里插入图片描述

4.2 运算量

因为我们知道傅里叶变换中有一个大名鼎鼎的快速傅里叶变换的算法FFT,其运算复杂度为 N log ⁡ N N\log N NlogN

  • 方式一:对于先卷积后傅里叶变换的计算量如下:
    F ( c ⊗ d ) = N 2 + N log ⁡ N \begin{equation} F(c\otimes d)=N^2+N\log N\end{equation} F(cd)=N2+NlogN
  • 方式二:先进行傅里叶变换后在点积的计算量如下:
    ( F c ) . ∗ ( F d ) = 2 N log ⁡ N + N \begin{equation} (Fc).* (Fd)=2N\log N+N\end{equation} (Fc).(Fd)=2NlogN+N
  • 当N=1024时,可得:
    F ( c ⊗ d ) ( F c ) . ∗ ( F d ) = 1024 + 10 2 ∗ 10 + 1 = 49.238 \begin{equation} \frac{F(c\otimes d)}{(Fc).* (Fd)}=\frac{1024+10}{2*10+1}=49.238\end{equation} (Fc).(Fd)F(cd)=210+11024+10=49.238
  • 简单来说,对于同样的卷积计算来说,我们选择方式二,如果把数列先进行傅里叶变换,再将序列点乘,得到的计算量在N=1024情况下,方式一的计算量居然是方式二的接近50倍。简直令人发指!!!所以我们需要拥抱FFT快速傅里叶变换,将数据的处理换一种方式进行,这样可以大大提高程序运行的速度!!!真是伟大的傅里叶!!!

4.3 二维卷积公式

假设我们有两个函数 f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y),它们的二维卷积公式如下:
h ( x , y ) = f ( x , y ) ∗ g ( x , y ) = ∫ ∞ ∫ ∞ f ( u , v ) g ( x − u , y − v ) d u d v \begin{equation} h(x,y)=f(x,y)*g(x,y)=\int^{\infty}\int^{\infty}f(u,v)g(x-u,y-v)\mathrm{du}\mathrm{dv}\end{equation} h(x,y)=f(x,y)g(x,y)=f(u,v)g(xu,yv)dudv

5. Kronecker Product

  • Kronecker Product 介绍:
    在这里插入图片描述
  • 举例介绍:
    A = [ 1 2 3 4 ] ; B = [ 0 5 6 7 ] \begin{equation} A=\begin{bmatrix}1&2\\\\3&4\end{bmatrix};B=\begin{bmatrix}0&5\\\\6&7\end{bmatrix}\end{equation} A= 1324 ;B= 0657
    A ⊗ B = [ 1 ⋅ B 2 ⋅ B 3 ⋅ B 4 ⋅ B ] = [ 0 5 0 10 6 7 12 14 0 15 0 20 18 21 24 28 ] \begin{equation} A\otimes B=\begin{bmatrix}1\cdot B&2\cdot B\\\\3\cdot B&4\cdot B\end{bmatrix}= \begin{bmatrix} 0&5&0&10\\\\ 6&7&12&14\\\\ 0&15&0&20\\\\ 18&21&24&28 \end{bmatrix}\end{equation} AB= 1B3B2B4B = 0601857152101202410142028

这篇关于线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141548

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个