卷积专题

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

深度学习基础--卷积的变种

随着卷积同经网络在各种问题中的广泛应用,卷积层也逐渐衍生出了许多变种,比较有代表性的有: 分组卷积( Group Convolution )、转置卷积 (Transposed Convolution) 、空洞卷积( Dilated/Atrous Convolution )、可变形卷积( Deformable Convolution ),下面分别介绍下。 1. 分组卷积 在普通的卷积操作中,一个

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

卷积神经网络(二)CIFAR100类别分类

一.数据介绍 总共一百个类,每个类有600个图像。每类500个训练图像,100个测试图像。没填图像都带有一个"精细"标签(它所属的类)核一个粗糙标签(它所属的超类)  二.API使用 用于构建CNN模型的API Conv2D:实现卷积,kernel_size,strides,padding,datafromat,'NHWC'核'NCHW' MaxPool2D:池化操作 impo

【python 走进NLP】从零开始搭建textCNN卷积神经网络模型

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 1、众所周知,tensorflow 是一个开源的机器学习框架,它的出现大大降低了机器学习的门槛,即使你没有太多的数学知识,它也可以允许你用“搭积木”的方式快速实现一个神经网络,即使没有调节太多的参数,模型的表现一般还

REMEMBERING HISTORY WITH CONVOLUTIONAL LSTM FOR ANOMALY DETECTION——利用卷积LSTM记忆历史进行异常检测

上海科技大学的文章,上海科技大学有个组一直在做这方面的工作,好文章挺多的还有数据集。 ABSTRACT 本文解决了视频中的异常检测问题,由于异常是无界的,所以异常检测是一项极具挑战性的任务。我们通过利用卷积神经网络(CNN或ConvNet)对每一帧进行外观编码,并利用卷积长期记忆(ConvLSTM)来记忆与运动信息相对应的所有过去的帧来完成这项任务。然后将ConvNet和ConvLSTM与

线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则

文章目录 1. ImageNet2. 卷积计算2.1 两个多项式卷积2.2 函数卷积2.3 循环卷积 3. 周期循环矩阵和非周期循环矩阵4. 循环卷积特征值4.1 卷积计算的分解4.2 运算量4.3 二维卷积公式 5. Kronecker Product 1. ImageNet ImageNet 的论文paper链接如下:详细请直接阅读相关论文即可 通过网盘分享的文件:image

【深度学习 卷积】利用ResNet-50模型实现高效GPU图片预测

本文介绍了如何使用训练好的ResNet-50模型进行图片预测。通过详细阐述模型原理、训练过程及预测步骤,帮助读者掌握基于深度学习的图片识别技术。 一、引言 近年来,深度学习技术在计算机视觉领域取得了显著成果,特别是卷积神经网络(CNN)在图像识别、分类等方面表现出色。ResNet-50作为一种经典的CNN模型,以其强大的特征提取能力和较高的预测准确率,在众多领域得到了广泛应用。本文将介绍如何使

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课

PointNet++改进策略 :模块改进 | PAConv,位置自适应卷积提升精度

题目:PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds来源:CVPR2021机构:香港大学论文:https://arxiv.org/abs/2103.14635代码:https://github.com/CVMI-Lab/PAConv 前言 PAConv,全称为位置自适应卷积

【Get深一度】信号处理必经之坎:相关与卷积【由理论至仿真】

相关与卷积的计算公式想必大家一看便懂,可其中奥义,囫囵吞枣,不得奇妙,原理与物理意义,我要吃了你们 相关函数:外衣不神秘,先剥开看看 信号啊信号,多想将你蹂躏,事实上,却反被蹂躏至死 … 信号到底是个什么东西,千百年来为何无数先人前赴后继,说白了就是电磁波;深了点就是电磁波的形状包含了信息;再深了点就是电磁波的形状被编了码或加了密;归根究底,就是电磁波嘛,只不过像是雕刻艺术一样搞得富

用于基于骨架的动作识别的空间时间图卷积网络 ST-GCN (代码+数据集+模型)

简介 本仓库包含论文《用于基于骨架的动作识别的空间时间图卷积网络》的相关代码、数据集和模型。 ST-GCN 动作识别演示 我们的基于骨架的动作识别演示展示了ST-GCN如何从人体骨架中提取局部模式和关联性。下图显示了我们ST-GCN最后一层中每个节点的神经响应幅度。 触摸头部 坐下 脱鞋 进食 投踢他人 掷锤 清洁与抓举 拉力器 太极拳 抛球 上一行结果来自NTU-RGB+D数据集,第

YoloV10改进策略:卷积篇|基于PConv的二次创新|附结构图|性能和精度得到大幅度提高(独家原创)

文章目录 摘要论文指导PConv在论文中的描述改进YoloV10的描述 改进代码与结构图改进方法测试结果总结 摘要 在PConv的基础上做了二次创新,创新后的模型不仅在精度和速度上有了质的提升,还可以支持Stride为2的降采样。 改进方法简单高效,需要发论文的同学不要错过! 论文指导 PConv在论文中的描述 论文: 下面我们展示了可以通过利用特征图的冗余来进一步优化成本

卷积神经网络综述

摘要 本文对卷积神经网络(Convolutional Neural Network,CNN)进行了全面综述。首先介绍了卷积神经网络的发展历程,包括早期的理论基础和关键突破。接着详细阐述了卷积神经网络的结构组成,包括卷积层、池化层、全连接层等,分析了各层的作用和特点。然后探讨了卷积神经网络在图像识别、目标检测、语义分割等多个领域的应用,并介绍了一些典型的应用案例。此外,还讨论了卷积神经网络的训练方

PyTorch 卷积层详解

PyTorch 卷积层详解 卷积层(Convolutional Layers)是深度学习中用于提取输入数据特征的重要组件,特别适用于处理图像和序列数据。PyTorch 提供了多种卷积层,分别适用于不同维度的数据。本文将详细介绍这些卷积层,特别是二维卷积层(nn.Conv2d),并结合示例说明其使用方法。 二维卷积层(nn.Conv2d) 二维卷积层(nn.Conv2d)是处理图像数据的核心组

Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task3-批量归一化+卷积神经网络

目录 1.批量归一化1.1 考虑深度学习1.2 测试时的批量归一化1.3 内部协变量偏移 2.卷积神经网络2.1 观察 1:检测模式不需要整张图像2.2 简化 1:感受野2.3 观察 2:同样的模式可能会出现在图像的不同区域2.4 简化 2:共享参数2.5 简化 1 和 2 的总结2.6 观察 3:下采样不影响模式检测2.7 简化 3:汇聚2.8 卷积神经网络的应用:下围棋 1.

卷积神经网络(Datawhale X 李宏毅苹果书AI夏令营)

卷积神经网络(Datawhale X 李宏毅苹果书AI夏令营) 卷积神经网络是一种非常典型的网络 架构,常用于图像分类等任务。 一张图像是一个三维的张量,其中一维代表图像的 宽,另外一维代表图像的高,还有一维代表图像的通道(channel)的数目 通道:彩色图像的每个像素都可以描述为红色(red)、绿色(green)、蓝色(blue)的组 合,这 3 种颜色就称为图像的 3 个色彩通道。这种

【Python机器学习】卷积神经网络(CNN)——语义理解

无论是人类还是机器,理解隐藏在文字背后的意图,对于倾听者或阅读者来说的,都是一项重要的技能。除了理解单个词的含义,词之间还有各种各样巧妙的组合方式。 词的性质和奥妙与词之间的关系密切相关。这种关系至少有两种表达方式: 词序词的临近度 这些关系的模式以及词本身存在的模式可以从两个方面来表示:空间和时间。两者的区别主要是:对于前者,要像在书页上的句子那样来处理——在文字的位置上寻找关系;对于后者

图像滤波和卷积的区别

图像滤波不改变图像的大小。 卷积在不加边缘填充的情况下,会改变图像大小。 卷积要有180度翻转卷积核的操作。 参考:https://blog.csdn.net/haoji007/article/details/53911940

CV-CNN-2015:GoogleNet-V3【贡献:卷积核分解(Factorization)减少参数量,比如将7x7分解成两个一维的卷积(1x7,7x1)】【避免表达瓶颈,更深】

Inception V3一个最重要的改进是分解(Factorization),将7x7分解成两个一维的卷积(1x7,7x1),3x3也是一样(1x3,3x1),这样的好处,既可以加速计算,又可以将1个卷积拆成2个卷积,使得网络深度进一步增加,增加了网络的非线性(每增加一层都要进行ReLU)。 另外,网络输入从224x224变为了299x299。 参考资料: CNN模型合集 | 7

CV-CNN-2015:GoogleNet-V2【首次提出Batch Norm方法:每次先对input数据进行归一化,再送入下层神经网络输入层(解决了协方差偏移问题)】【小的卷积核代替掉大的卷积核】

GoogLeNet凭借其优秀的表现,得到了很多研究人员的学习和使用,因此GoogLeNet团队又对其进行了进一步地发掘改进,产生了升级版本的GoogLeNet。 GoogLeNet设计的初衷就是要又准又快,而如果只是单纯的堆叠网络虽然可以提高准确率,但是会导致计算效率有明显的下降,所以如何在不增加过多计算量的同时提高网络的表达能力就成为了一个问题。 Inception V2版本的解决方案就是修

GNN-频域-2014:Spectral Networks and Locally Connected Networks on Graphs(频谱图卷积神经网络)【第一篇从频域角度分析】

《原始论文:Spectral Networks and Locally Connected Networks on Graphs》 空域卷积非常直观地借鉴了图像里的卷积操作,但缺乏一定的理论基础。 而频域卷积则不同,相比于空域卷积而言,它主要利用的是**图傅里叶变换(Graph Fourier Transform)**实现卷积。 简单来讲,它利用图的**拉普拉斯矩阵(Laplacian ma

GNN-节点向量(Node Embedding)的表征学习-发展:随机游走/一阶二阶相似度(静态表征)【直接学习出各个节点的向量表示】 -->图卷积(动态表征)【学习节点间聚合函数的参数】

静态表征 基于“随机游走”、“Word2vec”的:DeepWalk、Node2vec、Metapath2vec;基于“一阶相似度”、“二阶相似度”的:LINE、SDNE; 动态表征(GCN、GraphSAGE、GAT)【训练聚合函数的参数】

[深度学习]转置卷积(Transposed Convolution)

一.写在前面 在GAN(Generative Adversarial Nets, 直译为生成式对抗网络)中,生成器G利用随机噪声Z,生成数据。那么,在DCGAN中,这部分是如何实现呢?这里就利用到了Transposed Convolution(直译为转置卷积),也称为Fractional Strided Convolution。那么,接下来,从初学者的角度,用最简单的方式介绍什么是转置卷积,以及