[深度学习]转置卷积(Transposed Convolution)

2024-09-02 01:32

本文主要是介绍[深度学习]转置卷积(Transposed Convolution),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.写在前面

在GAN(Generative Adversarial Nets, 直译为生成式对抗网络)中,生成器G利用随机噪声Z,生成数据。那么,在DCGAN中,这部分是如何实现呢?这里就利用到了Transposed Convolution(直译为转置卷积),也称为Fractional Strided Convolution。那么,接下来,从初学者的角度,用最简单的方式介绍什么是转置卷积,以及在Tensorflow中如何实现转置卷积。

 

二.卷积与矩阵相乘

考虑如下卷积层运算,其参数为(i=4,k=3,s=1,p=0),输出o=2。

输入:4 × 4 --> 16 × 1

输入矩阵的大小为4×4,将矩阵按照从左到右,从上到下的方式,变形为长度为16的一维向量。

示意图:

 

a00a01a02a03
a10a11a12a13
a20a21a22a23
a30a31a32a33

=>

a00
a01
a02
a03
a10
a11
a12
a13
a20
a21
a22
a23
a30
a31
a32
a33

 

 

卷积核:3 × 3 --> 4 × 16

按照卷积操作的原理,将3 × 3的矩阵,变形为4 × 16 的矩阵。

示意图:

 

w00w01w02
w10w11w21
w20w21w22

=>

 

w00w01w020w10w11w120w20w21w2200000
0w00w01w020w10w11w120w20w21w220000
0000w00w01w020w10w11w120w20w21w220
00000w00w01w020w10w11w120w20w21w22

 

输出:Y = CX, (4×16) × (16×1) = (4×1),则是一个[4,1]的输出特征矩阵,把它重新排列为2×2的输出特征矩阵,就可以得到最终的结果。

 

因此,卷积层的计算可以转换为矩阵之间相乘。对于同一个卷积核,卷积操作是Y=C × X,那么转置卷积操作可以理解为Y=Transposed(C) × T。

输入:2 × 2 --> 4 × 1

矩阵C的转置:16 × 4

输出: Y = CX, (16×4) × (4×1) = (16×1),则是一个[16,1]的输出特征矩阵,把它重新排列为4×4的输出特征矩阵,就可以达到转置卷积的效果。

 

三.直观理解

下面只考虑No zero padding, unit strides的情况。

举例,输入图像大小为2×2,想得到输出图像大小为4×4。

 

思维模式1:假设输入图像大小为4×4,输出图像大小为2×2。在正向卷积中,卷积核的高度和宽度均为3,步长s=1,边距p=0。将该卷积过程转置即可。

 

思维模式2:直接卷积。输入图像大小为2×2,卷积核的大小为3×3,步长s=1,边距p=2。

示意图如下:

 

此时,卷积核和步长均没有变化。只有边距变为2。

 

如何理解边距p=2?

可以通过卷积操作中输入与输出图像的联系来理解。例如,输出图像的左上角的像素只与输入图像的左上角的像素有关,输出图像的右下角的像素只与输入图像的右下角的像素有关。因此,卷积核在做卷积时,要输出最右最上角的一个像素,只会利用输入图像的最右最上角的一个像素,其他区域均会填充0。因此,边距p的大小为(卷积核的大小-1)。

 

本文只用于快速理解转置卷积,其他情况的理解,可参考http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

 

四.在Tensorflow中实现转置卷积

[API]:

conv2d_transpose(value,
                     filter,
                     output_shape,
                     strides,
                     padding="SAME",
                     data_format="NHWC",
                     name=None)

Args:
    value: 四维tensor,类型为float,默认shape为[batch, height, width, in_channels]。`NHWC`格式,shape为[batch, height, width, in_channels];`NCHW` 格式,shape为[batch, in_channels, height, width]。

    filter: 四维tensor,类型与value相同,shape为[height, width, output_channels, in_channels]。in_channels必须与value中的in_channels相同。
    output_shape: 一维tensor,表示转置卷积操作输出的shape。取值为,[batch, height, width, in_channels]。
    strides:步长。
    padding:`'VALID'` 或者`'SAME'`.

令W为输入的size,F为filter的size, S为步长,为向上取整符号。

对于‘VALID’,输出的形状计算如下:

     new_height=new_width=⌈(WF+1)S

对于‘SAME’,输出的形状计算如下:

new_height=new_width=⌈WS

  举例,当步长为2时,余下的窗口只有一列。此时,’VALID‘会将剩余的列进行舍弃,’SAME‘会用0将不够的列进行填充。
    data_format:  'NHWC'或者 'NCHW'。
    name: 返回的tensor的名称(可选)。

  Returns:
    转置卷积操作的输出结果,与value具有相同类型的tensor。

  需要注意的是:

1.output的shape不能随意指定,需要是可以经过filter,strides,padding可以得到的shape。

2.tf.nn.conv2d中的filter参数为[filter_height, filter_width, in_channels, out_channels],与tf.nn.conv2d_transpose中的filter的参数顺序不同。

3.conv2d_transpose会计算output_shape能否通过给定的filter,strides,padding计算出inputs的维度,如果不能,则报错。

也就是说,conv2d_transpose中的filter,strides,padding参数,与反过程中的conv2d的参数相同。

 

举例:

# coding:utf-8
import tensorflow as tfdef main(_):# 输入4×4的单通道图像input_ = tf.constant(1., shape = [1,4,4,1])# 卷积核的大小为3×3×1,个数为1w = tf.constant(1., shape = [3,3,1,1])# 卷积:输出2×2的单通道图像result= tf.nn.conv2d(input_, w, strides=[1, 1, 1, 1], padding='VALID')# 转置卷积:输出4×4的单通道图像result2= tf.nn.conv2d_transpose(result, w, output_shape=[1,4,4,1], strides=[1, 1, 1, 1], padding='VALID')with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)print '输入4×4的单通道图像'print sess.run(input_)print '卷积:输出2×2的单通道图像'print sess.run(result)print '转置卷积:输出4×4的单通道图像'print sess.run(result2)if __name__ == '__main__':tf.app.run()

运行结果:


 

先卷积,再进行转置卷积,得到的结果和输入不一样,但是shape是一样的,说明了卷积和转置卷积并不是完全对称的两个过程。这也是现在不使用deconvolution这个概念的原因。

五.总结

这是对于转置卷积的基本理解。

 

这篇关于[深度学习]转置卷积(Transposed Convolution)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128613

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;