[深度学习]转置卷积(Transposed Convolution)

2024-09-02 01:32

本文主要是介绍[深度学习]转置卷积(Transposed Convolution),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.写在前面

在GAN(Generative Adversarial Nets, 直译为生成式对抗网络)中,生成器G利用随机噪声Z,生成数据。那么,在DCGAN中,这部分是如何实现呢?这里就利用到了Transposed Convolution(直译为转置卷积),也称为Fractional Strided Convolution。那么,接下来,从初学者的角度,用最简单的方式介绍什么是转置卷积,以及在Tensorflow中如何实现转置卷积。

 

二.卷积与矩阵相乘

考虑如下卷积层运算,其参数为(i=4,k=3,s=1,p=0),输出o=2。

输入:4 × 4 --> 16 × 1

输入矩阵的大小为4×4,将矩阵按照从左到右,从上到下的方式,变形为长度为16的一维向量。

示意图:

 

a00a01a02a03
a10a11a12a13
a20a21a22a23
a30a31a32a33

=>

a00
a01
a02
a03
a10
a11
a12
a13
a20
a21
a22
a23
a30
a31
a32
a33

 

 

卷积核:3 × 3 --> 4 × 16

按照卷积操作的原理,将3 × 3的矩阵,变形为4 × 16 的矩阵。

示意图:

 

w00w01w02
w10w11w21
w20w21w22

=>

 

w00w01w020w10w11w120w20w21w2200000
0w00w01w020w10w11w120w20w21w220000
0000w00w01w020w10w11w120w20w21w220
00000w00w01w020w10w11w120w20w21w22

 

输出:Y = CX, (4×16) × (16×1) = (4×1),则是一个[4,1]的输出特征矩阵,把它重新排列为2×2的输出特征矩阵,就可以得到最终的结果。

 

因此,卷积层的计算可以转换为矩阵之间相乘。对于同一个卷积核,卷积操作是Y=C × X,那么转置卷积操作可以理解为Y=Transposed(C) × T。

输入:2 × 2 --> 4 × 1

矩阵C的转置:16 × 4

输出: Y = CX, (16×4) × (4×1) = (16×1),则是一个[16,1]的输出特征矩阵,把它重新排列为4×4的输出特征矩阵,就可以达到转置卷积的效果。

 

三.直观理解

下面只考虑No zero padding, unit strides的情况。

举例,输入图像大小为2×2,想得到输出图像大小为4×4。

 

思维模式1:假设输入图像大小为4×4,输出图像大小为2×2。在正向卷积中,卷积核的高度和宽度均为3,步长s=1,边距p=0。将该卷积过程转置即可。

 

思维模式2:直接卷积。输入图像大小为2×2,卷积核的大小为3×3,步长s=1,边距p=2。

示意图如下:

 

此时,卷积核和步长均没有变化。只有边距变为2。

 

如何理解边距p=2?

可以通过卷积操作中输入与输出图像的联系来理解。例如,输出图像的左上角的像素只与输入图像的左上角的像素有关,输出图像的右下角的像素只与输入图像的右下角的像素有关。因此,卷积核在做卷积时,要输出最右最上角的一个像素,只会利用输入图像的最右最上角的一个像素,其他区域均会填充0。因此,边距p的大小为(卷积核的大小-1)。

 

本文只用于快速理解转置卷积,其他情况的理解,可参考http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

 

四.在Tensorflow中实现转置卷积

[API]:

conv2d_transpose(value,
                     filter,
                     output_shape,
                     strides,
                     padding="SAME",
                     data_format="NHWC",
                     name=None)

Args:
    value: 四维tensor,类型为float,默认shape为[batch, height, width, in_channels]。`NHWC`格式,shape为[batch, height, width, in_channels];`NCHW` 格式,shape为[batch, in_channels, height, width]。

    filter: 四维tensor,类型与value相同,shape为[height, width, output_channels, in_channels]。in_channels必须与value中的in_channels相同。
    output_shape: 一维tensor,表示转置卷积操作输出的shape。取值为,[batch, height, width, in_channels]。
    strides:步长。
    padding:`'VALID'` 或者`'SAME'`.

令W为输入的size,F为filter的size, S为步长,为向上取整符号。

对于‘VALID’,输出的形状计算如下:

     new_height=new_width=⌈(WF+1)S

对于‘SAME’,输出的形状计算如下:

new_height=new_width=⌈WS

  举例,当步长为2时,余下的窗口只有一列。此时,’VALID‘会将剩余的列进行舍弃,’SAME‘会用0将不够的列进行填充。
    data_format:  'NHWC'或者 'NCHW'。
    name: 返回的tensor的名称(可选)。

  Returns:
    转置卷积操作的输出结果,与value具有相同类型的tensor。

  需要注意的是:

1.output的shape不能随意指定,需要是可以经过filter,strides,padding可以得到的shape。

2.tf.nn.conv2d中的filter参数为[filter_height, filter_width, in_channels, out_channels],与tf.nn.conv2d_transpose中的filter的参数顺序不同。

3.conv2d_transpose会计算output_shape能否通过给定的filter,strides,padding计算出inputs的维度,如果不能,则报错。

也就是说,conv2d_transpose中的filter,strides,padding参数,与反过程中的conv2d的参数相同。

 

举例:

# coding:utf-8
import tensorflow as tfdef main(_):# 输入4×4的单通道图像input_ = tf.constant(1., shape = [1,4,4,1])# 卷积核的大小为3×3×1,个数为1w = tf.constant(1., shape = [3,3,1,1])# 卷积:输出2×2的单通道图像result= tf.nn.conv2d(input_, w, strides=[1, 1, 1, 1], padding='VALID')# 转置卷积:输出4×4的单通道图像result2= tf.nn.conv2d_transpose(result, w, output_shape=[1,4,4,1], strides=[1, 1, 1, 1], padding='VALID')with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)print '输入4×4的单通道图像'print sess.run(input_)print '卷积:输出2×2的单通道图像'print sess.run(result)print '转置卷积:输出4×4的单通道图像'print sess.run(result2)if __name__ == '__main__':tf.app.run()

运行结果:


 

先卷积,再进行转置卷积,得到的结果和输入不一样,但是shape是一样的,说明了卷积和转置卷积并不是完全对称的两个过程。这也是现在不使用deconvolution这个概念的原因。

五.总结

这是对于转置卷积的基本理解。

 

这篇关于[深度学习]转置卷积(Transposed Convolution)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128613

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实