首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
深度专题
基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模
前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG
阅读更多...
韦季李输入法_输入法和鼠标的深度融合
在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象
阅读更多...
免费也能高质量!2024年免费录屏软件深度对比评测
我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/ 录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口
阅读更多...
动手学深度学习【数据操作+数据预处理】
import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA
阅读更多...
深度优先(DFS)和广度优先(BFS)——算法
深度优先 深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支,当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访
阅读更多...
图解TCP三次握手|深度解析|为什么是三次
写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端
阅读更多...
java线程深度解析(六)——线程池技术
http://blog.csdn.net/Daybreak1209/article/details/51382604 一种最为简单的线程创建和回收的方法: [html] view plain copy new Thread(new Runnable(){ @Override public voi
阅读更多...
java线程深度解析(五)——并发模型(生产者-消费者)
http://blog.csdn.net/Daybreak1209/article/details/51378055 三、生产者-消费者模式 在经典的多线程模式中,生产者-消费者为多线程间协作提供了良好的解决方案。基本原理是两类线程,即若干个生产者和若干个消费者,生产者负责提交用户请求任务(到内存缓冲区),消费者线程负责处理任务(从内存缓冲区中取任务进行处理),两类线程之
阅读更多...
java线程深度解析(四)——并发模型(Master-Worker)
http://blog.csdn.net/daybreak1209/article/details/51372929 二、Master-worker ——分而治之 Master-worker常用的并行模式之一,核心思想是由两个进程协作工作,master负责接收和分配任务,worker负责处理任务,并把处理结果返回给Master进程,由Master进行汇总,返回给客
阅读更多...
java线程深度解析(二)——线程互斥技术与线程间通信
http://blog.csdn.net/daybreak1209/article/details/51307679 在java多线程——线程同步问题中,对于多线程下程序启动时出现的线程安全问题的背景和初步解决方案已经有了详细的介绍。本文将再度深入解析对线程代码块和方法的同步控制和多线程间通信的实例。 一、再现多线程下安全问题 先看开启两条线程,分别按序打印字符串的
阅读更多...
java线程深度解析(一)——java new 接口?匿名内部类给你答案
http://blog.csdn.net/daybreak1209/article/details/51305477 一、内部类 1、内部类初识 一般,一个类里主要包含类的方法和属性,但在Java中还提出在类中继续定义类(内部类)的概念。 内部类的定义:类的内部定义类 先来看一个实例 [html] view plain copy pu
阅读更多...
8. 自然语言处理中的深度学习:从词向量到BERT
引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)
阅读更多...
【2.1 深度学习中的感知机是什么】
2.1 深度学习中的感知机是什么 深度学习是机器学习的一个分支,它模拟人脑的工作方式来处理数据,尤其是通过神经网络的结构来自动提取数据的特征并进行分类、回归或其他复杂的任务。在深度学习的早期发展中,许多基础概念和模型为后续的复杂网络奠定了基础。其中,**感知机(Perceptron)**是一个非常重要的基础模型,它实际上是神经网络和深度学习的前身之一。 感知机的基本概念 感知机是一种二分
阅读更多...
深度学习实战:如何利用CNN实现人脸识别考勤系统
1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的
阅读更多...
深度学习速通系列:深度学习算法讲解
深度学习算法是一系列基于人工神经网络的算法,它们通过模拟人脑处理信息的方式来学习和解决复杂问题。这些算法在图像识别、语音识别、自然语言处理、游戏等领域取得了显著的成就。以下是一些流行的深度学习算法及其基本原理: 1. 前馈神经网络(Feedforward Neural Networks, FNN) 原理:FNN 是最基本的神经网络结构,它由输入层、隐藏层和输出层组成。信息从输入层流向隐藏层,最
阅读更多...
AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理
AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。
阅读更多...
深度剖析AI情感陪伴类产品及典型应用 Character.ai
前段时间AI圈内C.AI的受够风波可谓是让大家都丈二摸不着头脑,连C.AI这种行业top应用都要找谋生方法了!投资人摸不着头脑,用户们更摸不着头脑。在这之前断断续续玩了一下这款产品,这次也是乘着这个风波,除了了解一下为什么这么厉害的创始人 Noam Shazeer 也要另寻他路,以及产品本身的发展阶段和情况! 什么是Character.ai? Character.ai官网:https://
阅读更多...
AI学习指南深度学习篇-带动量的随机梯度下降法简介
AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随
阅读更多...
7. 深度强化学习:智能体的学习与决策
引言 深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。 1. 强化学习的基本框架 强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学
阅读更多...
基于深度学习 卷积神经网络resnext50的中医舌苔分类系统
项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他
阅读更多...
【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑
3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet
阅读更多...
关于字符串转化为数字的深度优化两种算法
最近在做项目,在实际操作中发现自己在VC环境下写的字符串转化为整型的函数还是太过理想化了,或者说只能在window平台下软件环境中运行,重新给大家发两种函数方法: 第一个,就是理想化的函数,在VC环境下充分利用指针的优越性,对字符串转化为整型(同时也回答了某位网友的答案吖),实验检验通过: #include <stdio.h> #include <string.h> int rayatoi(c
阅读更多...
深度学习--对抗生成网络(GAN, Generative Adversarial Network)
对抗生成网络(GAN, Generative Adversarial Network)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。 1. 概念 GAN由两个神经网络组成:生成器(Generator)和判别器(D
阅读更多...
C语言深度剖析--不定期更新的第四弹
哈哈哈哈哈哈,今天一天两更! void关键字 void关键字不能用来定义变量,原因是void本身就被编译器解释为空类型,编译器强制地不允许定义变量 定义变量的本质是:开辟空间 而void 作为空类型,理论上不应该开辟空间(针对编译器而言),即使开辟了空间,也只是作为一个占位符看待(针对Linux来说) 所以,既然无法开辟空间,也无法作为正常变量使用,既然无法使用,干脆编译器不让它编译变
阅读更多...
数据库遇上知识图谱、区块链、深度学习
参考资料: https://zhuanlan.zhihu.com/p/33381916 https://www.zuozuovera.com/archives/1062/ 东南大学D&Intel Lab相关ppt 数据库的核心概念——表示、存取、查询 有了数据库是干什么,大概实现的逻辑,特点,才能引申出对当今这些新技术的对比、适应和发展。 目的:研究数据表示、存取数据模型:表示数据的模型,通
阅读更多...
【动手学深度学习】04 数据操作 + 数据预处理(个人向笔记)
数据操作 N维数组是机器学习和神经网络的主要数据结构其中 2-d 矩阵中每一行表示每一行表示一个样本 当维度来到三维的时候则可以表示成一张图片,再加一维就可以变成多张图片,再加一维则可以变成一个视频 访问元素 冒号表示从冒号左边的元素到冒号右边的前一个元素(开区间),其中如果左边为空,那么表示从第一个开始,如果右边为空,那么表示访问到最后一个,如果两边都为空,则表示全部访问其中一行中我们指
阅读更多...