CV-CNN-2015:GoogleNet-V3【贡献:卷积核分解(Factorization)减少参数量,比如将7x7分解成两个一维的卷积(1x7,7x1)】【避免表达瓶颈,更深】

本文主要是介绍CV-CNN-2015:GoogleNet-V3【贡献:卷积核分解(Factorization)减少参数量,比如将7x7分解成两个一维的卷积(1x7,7x1)】【避免表达瓶颈,更深】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Inception V3一个最重要的改进是分解(Factorization),将7x7分解成两个一维的卷积(1x7,7x1),3x3也是一样(1x3,3x1),这样的好处,既可以加速计算,又可以将1个卷积拆成2个卷积,使得网络深度进一步增加,增加了网络的非线性(每增加一层都要进行ReLU)。

另外,网络输入从224x224变为了299x299。




参考资料:
CNN模型合集 | 7 Inception V2/V3

这篇关于CV-CNN-2015:GoogleNet-V3【贡献:卷积核分解(Factorization)减少参数量,比如将7x7分解成两个一维的卷积(1x7,7x1)】【避免表达瓶颈,更深】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128804

相关文章

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

如何来避免FOUC

FOUC(Flash of Unstyled Content)是指在网页加载过程中,由于CSS样式加载延迟或加载顺序不当,导致页面出现短暂的无样式内容闪烁现象。为了避免FOUC,可以采取以下几种方法: 1. 优化CSS加载 内联CSS:将关键的CSS样式直接嵌入到HTML文档的<head>部分,这样可以确保在页面渲染之前样式就已经加载和应用。提前引入CSS:将CSS文件放在HTML文档的<he

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

argodb自定义函数读取hdfs文件的注意点,避免FileSystem已关闭异常

一、问题描述 一位同学反馈,他写的argo存过中调用了一个自定义函数,函数会加载hdfs上的一个文件,但有些节点会报FileSystem closed异常,同时有时任务会成功,有时会失败。 二、问题分析 argodb的计算引擎是基于spark的定制化引擎,对于自定义函数的调用跟hive on spark的是一致的。udf要通过反射生成实例,然后迭代调用evaluate。通过代码分析,udf在

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

Qt: 详细理解delete与deleteLater (避免访问悬空指针导致程序异常终止)

前言 珍爱生命,远离悬空指针。 正文 delete 立即删除:调用 delete 后,对象会立即被销毁,其内存会立即被释放。调用顺序:对象的析构函数会被立即调用,销毁该对象及其子对象。无事件处理:如果在对象销毁过程中还涉及到信号和槽、事件处理等,直接 delete 可能会导致问题,尤其是在对象正在处理事件时。适用场景:适用于在确定对象已经不再被使用的情况下,并且不涉及异步处理或事件循环中的

一个统计文件中关键词数量的小程序-优化版本

public class computeWxxFileNum{public static void main(String[] args) throws IOException {//读文件File sourceFile = new File("e:\\55-tmp\\xxx.log");FileReader in = new FileReader(sourceFile); LineNumber