简单的Q-learning|小明的一维世界(3)

2024-09-08 09:32

本文主要是介绍简单的Q-learning|小明的一维世界(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简单的Q-learning|小明的一维世界(1)
简单的Q-learning|小明的一维世界(2)

一维的加速度世界

这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1=1,u2=0,u3=1}

补充:为了不和加速度符号 a a a混淆,此处动作标记全改成 u u u

此刻,小明除了位置信息,还具有速度信息,所以状态为三维的 s t = &lt; x t , v t , a t &gt; s_t=&lt;x_t,v_t,a_t&gt; st=<xt,vt,at>。其中, x t x_t xt为小明 t t t时刻的位置, v t v_t vt为小明 t t t时刻的速度, a t a_t at为小明在 t t t时刻的加速度。此处,小明的加速度空间也是离散的。不失一般性,此处加速度空间设定为
{ a 1 = − 2 , a 2 = − 1 , a 3 = 0 , a 4 = 1 , a 5 = 2 } \{a_1=-2, a_2=-1, a_3=0, a_4=1, a_5=2\} {a1=2,a2=1,a3=0,a4=1,a5=2}

根据组合原则,小明的状态总共有 21 × 7 × 5 = 735 21\times 7 \times 5=735 21×7×5=735个。状态空间如下所示部分:
S = { s 1 = &lt; x 1 , v 1 , a 1 &gt; , s 2 = &lt; x 2 , v 1 , a 1 &gt; , . . . , s 147 = &lt; x 21 , v 7 , a 5 &gt; } S=\{s_1=&lt;x_1, v_1, a_1&gt;, s_2=&lt;x_2, v_1, a_1&gt;,...,s_{147}=&lt;x_{21}, v_7, a_5&gt;\} S={s1=<x1,v1,a1>,s2=<x2,v1,a1>,...,s147=<x21,v7,a5>}

为了加快收敛速度,此处采用稠密奖励函数 r ( s ) = − ∣ x ∣ − ∣ v ∣ − ∣ a ∣ r(s)=-|x|-|v|-|a| r(s)=xva,当小明在中间石时,并且速度为零时,奖励最大。

此时的 Q t a b l e Q_{table} Qtable 735 × 3 735\times 3 735×3的矩阵。

  • 训练
import numpy as np
import matplotlib.pyplot as plt%matplotlib inlinedef model_update(x, v, a, u):a = a+uif a < -2: # 保证加速度在区间[-2,2]a = -2if a > 2:a = 2v = v+aif v < -3:  # 保证速度在区间[-3,3]v = -3if v> 3:v = 3  x = x+vif x < -10: # 保证位置在区间[-10, 10]x = -10if x > 10:x = 10          return x, v, axt = np.random.randint(-9, 10) # 随机初始化状态
vt = np.random.randint(-2, 3)
at = np.random.randint(-1, 2)
Q_table = np.zeros((735, 3)) # 初始化Q值为零
for i in range(5000000):u = np.random.randint(0,3)-1xt1, vt1, at1 = model_update(xt, vt, at, u)r = -abs(xt1)-abs(vt1)-abs(at1)Q_table[((at+2)*7+(vt+3))*21+xt+10, u+1] = r+0.9*np.max(Q_table[((at1+2)*7+(vt1+3))*21+xt1+10]) # 更新Q值xt = xt1vt = vt1at = at1
  • 利用策略
    初始状态为最左,速度最小,也即 s 0 = &lt; − 10 , − 3 , − 2 &gt; s_0=&lt;-10, -3, -2&gt; s0=<10,3,2>
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inlineis_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:from IPython import displayplt.ion()xt = -10
vt = -3
at = -2
x = np.arange(-10, 11)
y = np.zeros(21)
for i in range(100):u = np.argmax(Q_table[((at+2)*7+(vt+3))*21+xt+10])-1xt1, vt1, at1= model_update(xt, vt, at, u)print(xt, vt, at, u , xt1, vt1, at1)xt = xt1vt = vt1at = at1plt.clf()plt.plot(x, y, 'b')plt.plot(xt,[0], 'or')plt.pause(0.1)if is_ipython:display.clear_output(wait=True)display.display(plt.gcf())

steps. ( x t , v t , a t , u t , x t + 1 , v t + 1 , a t + 1 ) (x_t, v_t, a_t, u_t, x_{t+1}, v_{t+1}, a_{t+1}) (xt,vt,at,ut,xt+1,vt+1,at+1)
1. ( − 10 , − 3 , − 2 , 1 , − 10 , − 3 , − 1 ) (-10, -3, -2, 1, -10, -3, -1) (10,3,2,1,10,3,1)
2. ( − 10 , − 3 , − 1 , 1 , − 10 , − 3 , 0 ) (-10, -3, -1, 1, -10, -3, 0) (10,3,1,1,10,3,0)
3. ( − 10 , − 3 , 0 , 1 , − 10 , − 2 , 1 ) (-10, -3, 0, 1, -10, -2, 1) (10,3,0,1,10,2,1)
4. ( − 10 , − 2 , 1 , 1 , − 10 , 0 , 2 ) (-10, -2, 1, 1, -10, 0, 2) (10,2,1,1,10,0,2)
5. ( − 10 , 0 , 2 , − 1 , − 9 , 1 , 1 ) (-10, 0, 2, -1, -9, 1, 1) (10,0,2,1,9,1,1)
6. ( − 9 , 1 , 1 , 0 , − 7 , 2 , 1 ) (-9, 1, 1, 0, -7, 2, 1) (9,1,1,0,7,2,1)
7. ( − 7 , 2 , 1 , − 1 , − 5 , 2 , 0 ) (-7, 2, 1, -1, -5, 2, 0) (7,2,1,1,5,2,0)
8. ( − 5 , 2 , 0 , 0 , − 3 , 2 , 0 ) (-5, 2, 0, 0, -3, 2, 0) (5,2,0,0,3,2,0)
9. ( − 3 , 2 , 0 , 0 , − 1 , 2 , 0 ) (-3, 2, 0, 0, -1, 2, 0) (3,2,0,0,1,2,0)
10. ( − 1 , 2 , 0 , − 1 , 0 , 1 , − 1 ) (-1, 2, 0, -1, 0, 1, -1) (1,2,0,1,0,1,1)
11. ( 0 , 1 , − 1 , 0 , 0 , 0 , − 1 ) (0, 1, -1, 0, 0, 0, -1) (0,1,1,0,0,0,1)
12. ( 0 , 0 , − 1 , 1 , 0 , 0 , 0 ) (0, 0, -1, 1, 0, 0, 0) (0,0,1,1,0,0,0)
13. ( 0 , 0 , 0 , 0 , 0 , 0 , 0 ) (0, 0, 0, 0, 0, 0, 0) (0,0,0,0,0,0,0)

动态图——绿色的点代表小明
这里写图片描述

此处测试的初始状态都是取最坏的值,所以,步长可能会长一点。如果是从最左位置出发时,初始速度为0,初始加速度为0,则最后从最左到中间位置的所需步长:加速度世界<速度世界<位置世界。不过这和速度与加速度设定的区间是有关系的。总体来说,加速度世界比速度世界更加灵活,反应更快;而速度世界中,小明的反应又比位置世界中反应快,而不是傻傻的一步一个脚印。

##结语

到此,小明的一维世界系统到此就完结了。从一维的位置世界到一维的速度世界,再到一维的加速度世界。世界从易到难,状态个数从少到多,训练所需步长从少到多。当然,这都是在基于Q-table的Q-learning算法中,如果将Q-table换成表征能力更强的neural network,我们又可以做更复杂更有意思的事情了。

这篇关于简单的Q-learning|小明的一维世界(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147734

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 10130 简单背包

题意: 背包和 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>

JAVA用最简单的方法来构建一个高可用的服务端,提升系统可用性

一、什么是提升系统的高可用性 JAVA服务端,顾名思义就是23体验网为用户提供服务的。停工时间,就是不能向用户提供服务的时间。高可用,就是系统具有高度可用性,尽量减少停工时间。如何用最简单的方法来搭建一个高效率可用的服务端JAVA呢? 停工的原因一般有: 服务器故障。例如服务器宕机,服务器网络出现问题,机房或者机架出现问题等;访问量急剧上升,导致服务器压力过大导致访问量急剧上升的原因;时间和

简单的角色响应鼠标而移动

actor类 //处理移动距离,核心是找到角色坐标在世界坐标的向量的投影(x,y,z),然后在世界坐标中合成,此CC是在地面行走,所以Y轴投影始终置为0; using UnityEngine; using System.Collections; public class actor : MonoBehaviour { public float speed=0.1f; CharacterCo

docker-compose安装和简单使用

本文介绍docker-compose的安装和使用 新版docker已经默认安装了docker-compose 可以使用docker-compose -v 查看docker-compose版本 如果没有的话可以使用以下命令直接安装 sudo curl -L https://github.com/docker/compose/releases/download/1.16.1/docker-c