时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

本文主要是介绍时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

文章目录

  • 一、基本原理
      • 1. 变分模态分解(VMD)
      • 2. 双向时域卷积(BiTCN)
      • 3. 双向门控单元(BiGRU)
      • 4. 注意力机制(Attention)
      • 总结流程
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

一、基本原理

这个多变量时间序列预测模型结合了多个先进的技术,下面是其详细原理和流程:

1. 变分模态分解(VMD)

原理

  • VMD将时间序列数据分解成若干个固有模态函数(IMFs),以便更好地处理非平稳和非线性数据。
  • 变分模态分解通过优化问题来分解数据,利用变分原理寻找具有最大信息量的模态。

流程

  1. 分解:将原始时间序列分解成若干个IMFs。
  2. 重建:对每个IMF进行独立建模和预测,最后合成预测结果。

2. 双向时域卷积(BiTCN)

原理

  • BiTCN使用时域卷积来捕捉时间序列中的短期和长期依赖关系。
  • 双向卷积层同时考虑过去和未来的信息,以增强模型的预测能力。

流程

  1. 输入层:接受IMFs作为输入。
  2. 卷积层:应用卷积核对时间序列进行双向卷积操作。
  3. 激活与池化:通过激活函数和池化层提取特征。
  4. 输出层:生成时序特征的中间表示。

3. 双向门控单元(BiGRU)

原理

  • BiGRU是一种循环神经网络(RNN)的变体,增强了捕捉时间序列中长期依赖的能力。
  • 双向GRU通过在时间序列的前后方向进行建模,捕捉更多的上下文信息。

流程

  1. 输入层:接收BiTCN提取的特征。
  2. 双向GRU层:分别在前向和后向处理序列数据。
  3. 门控机制:使用更新门和重置门控制信息流动。

4. 注意力机制(Attention)

原理

  • 注意力机制使模型能够自动聚焦于序列中重要的信息,增强对关键时间点的关注。
  • 通过计算不同时间步的权重,提升模型对重要特征的敏感度。

流程

  1. 计算注意力权重:对GRU输出进行加权,计算各时间步的注意力权重。
  2. 加权求和:根据注意力权重对时间步进行加权求和,得到加权特征表示。
  3. 融合特征:将加权特征与GRU输出融合,形成最终的预测输入。

总结流程

  1. VMD分解:将时间序列分解为若干个IMFs。
  2. BiTCN提取特征:对每个IMF应用双向时域卷积,提取时间特征。
  3. BiGRU建模:使用双向GRU对BiTCN提取的特征进行建模。
  4. Attention增强:通过注意力机制对GRU输出进行加权,提升重要特征的影响。
  5. 最终预测:融合加权特征,进行最终的时间序列预测。

这种集成方法结合了时域卷积、双向门控机制和注意力机制,旨在提升多变量时间序列预测的准确性和鲁棒性。

二、实验结果

Matlab版本要求:2023a以上

变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144513

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

java如何调用kettle设置变量和参数

《java如何调用kettle设置变量和参数》文章简要介绍了如何在Java中调用Kettle,并重点讨论了变量和参数的区别,以及在Java代码中如何正确设置和使用这些变量,避免覆盖Kettle中已设置... 目录Java调用kettle设置变量和参数java代码中变量会覆盖kettle里面设置的变量总结ja

Perl 特殊变量详解

《Perl特殊变量详解》Perl语言中包含了许多特殊变量,这些变量在Perl程序的执行过程中扮演着重要的角色,:本文主要介绍Perl特殊变量,需要的朋友可以参考下... perl 特殊变量Perl 语言中包含了许多特殊变量,这些变量在 Perl 程序的执行过程中扮演着重要的角色。特殊变量通常用于存储程序的