注意力专题

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

机器之心 | 预训练无需注意力,扩展到4096个token不成问题,与BERT相当

本文来源公众号“机器之心”,仅用于学术分享,侵权删,干货满满。 原文链接:预训练无需注意力,扩展到4096个token不成问题,与BERT相当 本文提出了双向门控 SSM(BiGS)模型,结合基于状态空间模型(SSM)的 Routing 层和基于乘法门的模型架构,在不使用注意力的情况下能够复制 BERT 预训练结果,并可扩展到 4096 个 token 的长程预训练,不需要近似。 Tr

YOLOv8改进实战 | 注意力篇 | 引入基于跨空间学习的高效多尺度注意力EMA,小目标涨点明显

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进

爆改YOLOv8|利用yolov10的PSA注意力机制改进yolov8-高效涨点

1,本文介绍 PSA是一种改进的自注意力机制,旨在提升模型的效率和准确性。传统的自注意力机制需要计算所有位置对之间的注意力,这会导致计算复杂度高和训练时间长。PSA通过引入极化因子来减少需要计算的注意力对的数量,从而降低计算负担。极化因子是一个向量,通过与每个位置的向量点积,确定哪些位置需要计算注意力。这种方法可以在保持模型准确度的前提下,显著减少计算量,从而提升自注意力机制的效率。 关于PS

信息熵|atttion矩阵的注意力熵

显著图可以看作是模型的注意力图,它标识了模型对输入图像某些区域的关注程度。我们使用 blob 区域(连通的显著区域)来检测模型关注的部分,然后计算这些区域的概率分布,再通过熵来衡量这些区域的“信息量”或“分散度”。 举个简单的例子: Step 1: 假设有一个 4x4 的注意力图 x: x = [[0.1, 0.2, 0.4, 0.1],[0.1, 0.5, 0.3, 0.2],[0.7,

YOLOv8改进实战 | 引入混合局部通道注意力模块MLCA(2023轻量级)

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进

10-1 注意力提示

感谢读者对本书的关注,因为读者的注意力是一种稀缺的资源: 此刻读者正在阅读本书(而忽略了其他的书), 因此读者的注意力是用机会成本(与金钱类似)来支付的。 为了确保读者现在投入的注意力是值得的, 作者们尽全力(全部的注意力)创作一本好书。 自经济学研究稀缺资源分配以来,人们正处在“注意力经济”时代, 即人类的注意力被视为可以交换的、有限的、有价值的且稀缺的商品。 许多商业模式也被开发出来去利用这

计算机视觉之 SE 注意力模块

计算机视觉之 SE 注意力模块 一、简介 SEBlock 是一个自定义的神经网络模块,主要用于实现 Squeeze-and-Excitation(SE)注意力机制。SE 注意力机制通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。 原论文:《Squeeze-and-Excitation Networks》 二、语法和参数 语法 class SEBlock(n

计算机视觉之 GSoP 注意力模块

计算机视觉之 GSoP 注意力模块 一、简介 GSopBlock 是一个自定义的神经网络模块,主要用于实现 GSoP(Global Second-order Pooling)注意力机制。GSoP 注意力机制通过计算输入特征的协方差矩阵,捕捉全局二阶统计信息,从而增强模型的表达能力。 原论文:《Global Second-order Pooling Convolutional Netwo

注意力机制(Attention mechanism)(中篇)

模型的输入是一组向量,它可以是文字,可以是语音,可以是图。而输出有三种可能性, 第一种可能性是每一个向量都有一个对应的标签。如图1所示,当模型看到输入是4个向 量的时候,它就要输出4个标签。如果是回归问题,每个标签是一个数值。如果是分类问题, 每个标签是一个类别。但是在类型1的问题里面,输入跟输出的长度是一样的。模型不需要 去烦恼要输出多少的标签,输出多少的标量。反正输入是4个向量,输出就是4个标

注意力机制(Attention mechanism)(上篇)

在图像识别的时候,假设输入的图像大小都是一样的。但如果问题变得复杂,如图1所 示,输入是一组向量,并且输入的向量的数量是会改变的,即每次模型输入的序列长度都不一 样,这个时候应该要怎么处理呢?我们通过具体的例子来讲解处理方法。 图1  输入是一组向量         第一个例子是文字处理,假设网络的输入是一个句子,每一个句子的长度都不一样(每个 句子里面词汇的数量都不一样)

YOLOv8改进 | 注意力篇 | YOLOv8引入LSK注意力机制

1. LSK介绍 1.1  摘要: 最近关于遥感目标检测的研究主要集中在改进定向边界框的表示上,但忽略了遥感场景中呈现的独特先验知识。 这种先验知识可能很有用,因为在没有参考足够远距离上下文的情况下,可能会错误地检测微小的遥感物体,并且不同类型物体所需的远距离上下文可能会有所不同。 在本文中,我们考虑到这些先验并提出了大型选择性核网络(LSKNet)。 LSKNet可以动态调整其大的空间感受

YOLOv8改进 | 注意力篇 | YOLOv8引入CBAM注意力机制

1.CBAM介绍 摘要:我们提出了卷积块注意力模块(CBAM),这是一种用于前馈卷积神经网络的简单而有效的注意力模块。 给定中间特征图,我们的模块沿着两个独立的维度(通道和空间)顺序推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征细化。 由于 CBAM 是一个轻量级通用模块,因此它可以无缝集成到任何 CNN 架构中,且开销可以忽略不计,并且可以与基础 CNN 一起进行端到端训练。

Bahdanau注意力机制

介绍 在Bahadanu注意力机制中,本质上是序列到序列学习的注意力机制实现,在编码器-解码器结构中,解码器的每一步解码过程都依赖着整个上下文变量,通过Bahdanau注意力,使得解码器在每一步解码时,对于整个上下文变量的不同部分产生不同程度的对齐,如在文本翻译时,将“I am studying”的“studying”与“我正在学习”的“学习”进行对齐,即注意力在解码时将绝大多数注意力放在“st

Unet改进10:在不同位置添加CPCA||通道先验卷积注意力机制

本文内容:在不同位置添加CPCA注意力机制 目录 论文简介 1.步骤一 2.步骤二 3.步骤三 4.步骤四 论文简介 低对比度和显著的器官形状变化等特征经常出现在医学图像中。现有注意机制的自适应能力普遍不足,限制了医学影像分割性能的提高。本文提出了一种有效的通道先验卷积注意(CPCA)方法,该方法支持通道和空间维度上注意权重的动态分布。通过采用多尺度深度卷积模块,有效地提取

基于部分注意力的人脸识别

ATTENTION-BASED PARTIAL FACE RECOGNITION 创新点         通过将ResNet的中间特征图的注意力池与单独的聚合模块相结合。 网络模型         分为三个模块:提取、注意力和聚合。提取模块从输入图像中提取特征图F ∈ R20×20×1024和注意图A ∈ R20×20×K,K表示注意图的个数。在Attend模块中,使用重新校准的注

【CVPR‘24】DeCoTR:使用 2D 和 3D 注意力增强深度补全

DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions 中文解析摘要介绍方法方法3.1 问题设置3.2 使用高效的 2D 注意力增强基线3.3 3D中的特征交叉注意力点云归一化位置嵌入 3.4 捕捉 3D

爆改YOLOv8|利用全新的聚焦式线性注意力模块Focused Linear Attention 改进yolov8(v1)

1,本文介绍 全新的聚焦线性注意力模块(Focused Linear Attention)是一种旨在提高计算效率和准确性的注意力机制。传统的自注意力机制在处理长序列数据时通常计算复杂度较高,限制了其在大规模数据上的应用。聚焦线性注意力模块则通过优化注意力计算的方式,显著降低了计算复杂度。 核心特点: 线性时间复杂度:与传统的自注意力机制不同,聚焦线性注意力模块采用了线性时间复杂度的计算方法

基于YOLOv8的学生课堂行为检测,引入BRA注意力和Shape IoU改进提升检测能力

学生课堂行为检测系统:基于YOLOv8的改进与优化 项目背景: 随着教育技术的发展,利用计算机视觉技术对学生在课堂中的行为进行实时监测成为可能。这有助于教师了解学生的参与度、注意力集中情况等,进而优化教学方法和提高教学质量。 技术基础: 本项目采用YOLOv8作为基础框架。YOLO(You Only Look Once)是一种实时目标检测算法,以其高速度和高精度著称。YOLOv8是该

Transformer模型、强化学习、深度学习模型可解释性与可视化方法、注意力机制、目标检测算法、图神经网络、强化学习

近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。 抽丝剥茧、深入浅出讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标

DCFormer: 动态组合多头自注意力

多头注意力(MHA)是Transformer的关键组成部分。在MHA中,注意力头是独立工作的,导致注意得分矩阵的低秩瓶颈和注意头冗余等问题。动态组合多头注意(dynamic Composable Multi-Head Attention, DCMHA)是一种参数化和计算效率高的注意力结构,它解决了MHA的不足,并通过动态组合注意头来提高模型的表达能力。DCMHA的核心是一个Comp

YOLOv9改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,提高模型效率

一、本文介绍 本文记录的是基于Mobile MQA模块的YOLOv9目标检测改进方法研究。MobileNetv4中的Mobile MQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。 文章目录 一、本文介绍二、Mobile MQA注意力原理三、Mobile MQA的实现代码四、添加步骤4.1 修改common.