YOLOv8改进实战 | 注意力篇 | 引入基于跨空间学习的高效多尺度注意力EMA,小目标涨点明显

本文主要是介绍YOLOv8改进实战 | 注意力篇 | 引入基于跨空间学习的高效多尺度注意力EMA,小目标涨点明显,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


在这里插入图片描述


在这里插入图片描述
YOLOv8专栏导航:点击此处跳转


前言

YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。

YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以进一步提高性能和灵活性。YOLOv8 旨在快速、准确且易于使用,这也使其成为对象检测、图像分割和图像分类任务的绝佳选择。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,还支持YOLO以往版本,方便不同版本切换和性能对比。


目录

  • 一、EMA介绍
  • 二、代码实现
    • 代码目录
    • 注册模块
    • 配置yaml文件
  • 三、模型测试
  • 四、模型训练
  • 五、总结

一、EMA介绍

在这里插入图片描述

论文链接:Efficient Multi-Scale Attention Module with Cross-Spatial Learning

在这里插入图片描述

论文提出了一种新颖的高效多尺度注意力(EMA)模块。EMA模块旨在保留每个通道的信息,同时减少计算开销。它通过重塑部分通道到批次维度,并将通道雏度分组为多个子特征,使得空间语义特征在每个特征组内均匀分布。此外,EMA模块通过编码全局信息来重新校准每个并行分支中的通道权重,并通过跨维度交互来捕获像素级别的成对关系。

在这里插入图片描述

创新点主要包括:

  1. 高效多尺度注意力(EMA):新型的注意力机制,同时减少计算开销和保留每个通道的关键信息

  2. 通道和批次维度的重组:通过重新组织通道维度和批次维度,提高了模型处理特征的能力。

  3. 跨维度交互:模块利用跨维度的交互来捕捉像素级别的关系

  4. 全局信息编码和通道权重校准:在并行分支中编码全局信息,用于通道权重的重新校准,增强了特征表示的能力。

二、代码实现

代码目录

  • 按下面文件夹结构创建文件(相比于在原有ultralytics/nn/modules文件夹下的相关文件中直接添加便于管理
    - ultralytics- nn- extra_modules- __init__.py- attention.py- modules
    

ultralytics/nn/extra_modules/__init__.py中添加:

from .attention import *

ultralytics/nn/extra_modules/attention.py中添加:

import torch
from torch import nn__all__ = ['EMA']class EMA(nn.Module):def __init__(self, channels, factor=8):super(EMA, self).__init__()self.groups = factorassert channels // self.groups > 0self.softmax = nn.Softmax(-1)self.agp = nn.AdaptiveAvgPool2d((1, 1))self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)def forward(self, x):b, c, h, w = x.size()group_x = x.reshape(b * self.groups, -1, h, w)  # b*g,c//g,h,wx_h = self.pool_h(group_x)x_w = self.pool_w(group_x).permute(0, 1, 3, 2)hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))x_h, x_w = torch.split(hw, [h, w], dim=2)x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())x2 = self.conv3x3(group_x)x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwx21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwweights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)return (group_x * weights.sigmoid()).reshape(b, c, h, w)

注册模块

ultralytics/nn/tasks.py文件开头添加:

from ultralytics.nn.extra_modules import *

ultralytics/nn/tasks.py文件中parse_model函数添加:

elif m in {EMA}:args = [ch[f], *args]

配置yaml文件

yolov8-ema.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, EMA, []]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 19 (P4/16-medium)- [-1, 1, EMA, []]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 23 (P5/32-large)- [-1, 1, EMA, []]- [[16, 20, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)

三、模型测试

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOmodel = YOLO("yolov8n-ema.yaml")  # build a new model from scratch
                   from  n    params  module                                       arguments0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]16                  -1  1       672  ultralytics.nn.extra_modules.attention.EMA   [64]17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]19                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]20                  -1  1      2624  ultralytics.nn.extra_modules.attention.EMA   [128]21                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]22             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]23                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]24                  -1  1     10368  ultralytics.nn.extra_modules.attention.EMA   [256]25        [16, 20, 24]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLOv8n-ema summary: 249 layers, 3170864 parameters, 3170848 gradients, 9.1 GFLOPs

四、模型训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO# Load a model
model = YOLO("yolov8n-ema.yaml")  # build a new model from scratch# Use the model
model.train(data="./mydata/data.yaml",epochs=300,batch=32,imgsz=640,workers=8,device=0,project="runs/train",name='exp')  # train the model

五、总结

  • 模型的训练具有很大的随机性,您可能需要点运气和更多的训练次数才能达到最高的 mAP。
    在这里插入图片描述

这篇关于YOLOv8改进实战 | 注意力篇 | 引入基于跨空间学习的高效多尺度注意力EMA,小目标涨点明显的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138025

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下