YOLOv9改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,提高模型效率

本文主要是介绍YOLOv9改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,提高模型效率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文记录的是基于Mobile MQA模块的YOLOv9目标检测改进方法研究MobileNetv4中的Mobile MQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。

文章目录

  • 一、本文介绍
  • 二、Mobile MQA注意力原理
  • 三、Mobile MQA的实现代码
  • 四、添加步骤
    • 4.1 修改common.py
      • 4.1.1 创新模块⭐
    • 4.2 修改yolo.py
  • 五、yaml模型文件
    • 5.1 模型改进⭐
  • 六、成功运行结果


二、Mobile MQA注意力原理

在论文《MobileNetV4 - Universal Models for the Mobile Ecosystem》中,提出了Mobile MQA

一、原理

  1. 基于MQA改进并结合不对称空间下采样
    • MQA(Multi-Query Attention)简化了传统的多头注意力机制,通过共享keysvalues来减少内存访问需求。在移动混合模型中,当批量大小较小时,这种方式能有效提高运算强度。
    • 借鉴MQA中对querieskeysvalues的不对称计算方式,Mobile MQA引入了空间缩减注意力(SRA),对keysvalues进行下采样,同时保持高分辨率的queries。这是因为在混合模型中,早期层的空间混合卷积滤波器使得空间上相邻的标记具有相关性。
    • Mobile MQA的计算公式为:
      M o b i l e _ M Q A ( X ) = C o n c a t ( a t t e n t i o n 1 , . . . , a t t e n t i o n n ) W O Mobile\_MQA(X)= Concat(attention_1,...,attention_n)W^{O} Mobile_MQA(X)=Concat(attention1,...,attentionn)WO
      其中 a t t e n t i o n j = s o f t m a x ( ( X W Q j ) ( S R ( X ) W K ) T d k ) ( S R ( X ) W V ) attention_j = softmax(\frac{(XW^{Q_j})(SR(X)W^{K})^{T}}{\sqrt{d_k}})(SR(X)W^{V}) attentionj=softmax(dk (XWQj)(SR(X)WK)T)(SR(X)WV),这里SR可以是空间缩减操作(在设计中是一个步长为2的3x3深度卷积),也可以是恒等函数(当不进行空间缩减时)。

二、特点

  1. 针对加速器优化:专门为移动加速器进行了优化,考虑了移动加速器的计算和内存特性。
  2. 不对称空间下采样:通过对keysvalues进行下采样,保持queries的高分辨率,在不损失太多精度的情况下,显著提高了效率。
  3. 操作简单高效:相比传统的注意力机制,Mobile MQA的设计更加简单,操作更加高效,更适合在移动设备上运行。

论文:http://arxiv.org/abs/2404.10518
源码:https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py

三、Mobile MQA的实现代码

Mobile MQA模块的实现代码如下:

class MultiQueryAttentionLayerWithDownSampling(nn.Module):def __init__(self, in_channels, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides, dw_kernel_size=3, dropout=0.0):"""Multi Query Attention with spatial downsampling.Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py3 parameters are introduced for the spatial downsampling:1. kv_strides: downsampling factor on Key and Values only.2. query_h_strides: vertical strides on Query only.3. query_w_strides: horizontal strides on Query only.This is an optimized version.1. Projections in Attention is explict written out as 1x1 Conv2D.2. Additional reshapes are introduced to bring a up to 3x speed up."""super(MultiQueryAttentionLayerWithDownSampling, self).__init__()self.num_heads = num_headsself.key_dim = key_dimself.value_dim = value_dimself.query_h_strides = query_h_stridesself.query_w_strides = query_w_stridesself.kv_strides = kv_stridesself.dw_kernel_size = dw_kernel_sizeself.dropout = dropoutself.head_dim = self.key_dim // num_headsif self.query_h_strides > 1 or self.query_w_strides > 1:self._query_downsampling_norm = nn.BatchNorm2d(in_channels)self._query_proj = conv2d(in_channels, self.num_heads * self.key_dim, 1, 1, norm=False, act=False)if self.kv_strides > 1:self._key_dw_conv = conv2d(in_channels, in_channels, dw_kernel_size, kv_strides, groups=in_channels,norm=True, act=False)self._value_dw_conv = conv2d(in_channels, in_channels, dw_kernel_size, kv_strides, groups=in_channels,norm=True, act=False)self._key_proj = conv2d(in_channels, key_dim, 1, 1, norm=False, act=False)self._value_proj = conv2d(in_channels, key_dim, 1, 1, norm=False, act=False)self._output_proj = conv2d(num_heads * key_dim, in_channels, 1, 1, norm=False, act=False)self.dropout = nn.Dropout(p=dropout)def forward(self, x):bs, seq_len, _, _ = x.size()# print(x.size())if self.query_h_strides > 1 or self.query_w_strides > 1:q = F.avg_pool2d(self.query_h_strides, self.query_w_strides)q = self._query_downsampling_norm(q)q = self._query_proj(q)else:q = self._query_proj(x)px = q.size(2)q = q.view(bs, self.num_heads, -1, self.key_dim)  # [batch_size, num_heads, seq_len, key_dim]if self.kv_strides > 1:k = self._key_dw_conv(x)k = self._key_proj(k)v = self._value_dw_conv(x)v = self._value_proj(v)else:k = self._key_proj(x)v = self._value_proj(x)k = k.view(bs, 1, self.key_dim, -1)   # [batch_size, 1, key_dim, seq_length]v = v.view(bs, 1, -1, self.key_dim)    # [batch_size, 1, seq_length, key_dim]# calculate attention score# print(q.shape, k.shape, v.shape)attn_score = torch.matmul(q, k) / (self.head_dim ** 0.5)attn_score = self.dropout(attn_score)attn_score = F.softmax(attn_score, dim=-1)# context = torch.einsum('bnhm,bmv->bnhv', attn_score, v)# print(attn_score.shape, v.shape)context = torch.matmul(attn_score, v)context = context.view(bs, self.num_heads * self.key_dim, px, px)output = self._output_proj(context)# print(output.shape)return output
参数解释
in_channels输入通道数
num_heads自注意力头的数量
key_dim键的维度
key_dim值的维度
value_dim仅用于查询的,在H方向上的步长
query_h_strides仅用于查询的,在W方向上的步长
query_w_strides仅对键和值进行下采样,1不进行下采样,2下采样
dw_kernel_size=3深度可分离卷积的卷积核大小
dropout=0.0随机丢失比例

四、添加步骤

4.1 修改common.py

此处需要修改的文件是models/common.py

common.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

4.1.1 创新模块⭐

模块改进方法:基于Mobile MQA模块RepNCSPELAN4

改进方法是对YOLOv9中的RepNCSPELAN4模块进行改进。RepNCSPELAN4模块的创新思想是将CSPELAN相结合。CSP可以有效地分割梯度流,减少计算量的同时保持准确性。ELAN则通过灵活的层聚合方式,增强网络的学习能力。而MobileNetv4中的Mobile MQA模块则是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,利用Mobile MQA替换RepNCSPELAN4模块中的卷积层后,不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。

改进代码如下:参考代码

class MMQARepNCSPELAN4(nn.Module):# csp-elandef __init__(self, c1, c2, c3, c4, c5=1):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = c3//2self.cv1 = Conv(c1, c3, 1, 1)self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), MultiQueryAttentionLayerWithDownSampling(c4, 8, 48, 48, 1, 1, 1))self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), MultiQueryAttentionLayerWithDownSampling(c4, 8, 48, 48, 1, 1, 1))self.cv4 = Conv(c3+(2*c4), c2, 1, 1)def forward(self, x):y = list(self.cv1(x).chunk(2, 1))y.extend((m(y[-1])) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))def forward_split(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))

在这里插入图片描述

在这里插入图片描述

注意❗:在4.2小节中的yolo.py文件中需要声明的模块名称为:MultiQueryAttentionLayerWithDownSamplingMMQARepNCSPELAN4

4.2 修改yolo.py

此处需要修改的文件是models/yolo.py

yolo.py用于函数调用,我们只需要将common.py中定义的新的模块名添加到parse_model函数下即可。

MultiQueryAttentionLayerWithDownSampling模块以及MMQARepNCSPELAN4模块添加后如下:

在这里插入图片描述


五、yaml模型文件

5.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以models/detect/yolov9-c.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-MMQARepNCSPELAN4.yaml

yolov9-c.yaml中的内容复制到yolov9-c-MMQARepNCSPELAN4.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有RepNCSPELAN4模块替换成MMQARepNCSPELAN4模块,优化整体,提高效率。

结构如下:

# YOLOv9# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, MMQARepNCSPELAN4, [256, 128, 64, 1]],  # 3  修改此处# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, MMQARepNCSPELAN4, [512, 256, 128, 1]],  # 5  修改此处# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, MMQARepNCSPELAN4, [512, 512, 256, 1]],  # 7  修改此处# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, MMQARepNCSPELAN4, [512, 512, 256, 1]],  # 9  修改此处]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detection head# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

六、成功运行结果

分别打印网络模型可以看到MMQARepNCSPELAN4已经加入到模型中,并可以进行训练了。

yolov9-c-MMQARepNCSPELAN4

                 from  n    params  module                                  arguments                     0                -1  1         0  models.common.Silence                   []                            1                -1  1      1856  models.common.Conv                      [3, 64, 3, 2]                 2                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               3                -1  1    249472  models.common.MMQARepNCSPELAN4          [128, 256, 128, 64, 1]        4                -1  1    164352  models.common.ADown                     [256, 256]                    5                -1  1    773376  models.common.MMQARepNCSPELAN4          [256, 512, 256, 128, 1]       6                -1  1    656384  models.common.ADown                     [512, 512]                    7                -1  1   2119168  models.common.MMQARepNCSPELAN4          [512, 512, 512, 256, 1]       8                -1  1    656384  models.common.ADown                     [512, 512]                    9                -1  1   2119168  models.common.MMQARepNCSPELAN4          [512, 512, 512, 256, 1]       10                -1  1    656896  models.common.SPPELAN                   [512, 512, 256]               11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 7]  1         0  models.common.Concat                    [1]                           13                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      14                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          15           [-1, 5]  1         0  models.common.Concat                    [1]                           16                -1  1    912640  models.common.RepNCSPELAN4              [1024, 256, 256, 128, 1]      17                -1  1    164352  models.common.ADown                     [256, 256]                    18          [-1, 13]  1         0  models.common.Concat                    [1]                           19                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       20                -1  1    656384  models.common.ADown                     [512, 512]                    21          [-1, 10]  1         0  models.common.Concat                    [1]                           22                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      23                 5  1    131328  models.common.CBLinear                  [512, [256]]                  24                 7  1    393984  models.common.CBLinear                  [512, [256, 512]]             25                 9  1    656640  models.common.CBLinear                  [512, [256, 512, 512]]        26                 0  1      1856  models.common.Conv                      [3, 64, 3, 2]                 27                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               28                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        29                -1  1    164352  models.common.ADown                     [256, 256]                    30  [23, 24, 25, -1]  1         0  models.common.CBFuse                    [[0, 0, 0]]                   31                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       32                -1  1    656384  models.common.ADown                     [512, 512]                    33      [24, 25, -1]  1         0  models.common.CBFuse                    [[1, 1]]                      34                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       35                -1  1    656384  models.common.ADown                     [512, 512]                    36          [25, -1]  1         0  models.common.CBFuse                    [[2]]                         37                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       38[31, 34, 37, 16, 19, 22]  1  21542822  DualDDetect                             [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-MMQARepNCSPELAN4 summary: 1018 layers, 49485350 parameters, 49485318 gradients, 236.8 GFLOPs

这篇关于YOLOv9改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,提高模型效率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105778

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL