用于基于骨架的动作识别的空间时间图卷积网络 ST-GCN (代码+数据集+模型)

本文主要是介绍用于基于骨架的动作识别的空间时间图卷积网络 ST-GCN (代码+数据集+模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介 本仓库包含论文《用于基于骨架的动作识别的空间时间图卷积网络》的相关代码、数据集和模型。

ST-GCN 动作识别演示 我们的基于骨架的动作识别演示展示了ST-GCN如何从人体骨架中提取局部模式和关联性。下图显示了我们ST-GCN最后一层中每个节点的神经响应幅度。

触摸头部 坐下 脱鞋 进食 投踢他人 掷锤 清洁与抓举 拉力器 太极拳 抛球 上一行结果来自NTU-RGB+D数据集,第二行来自Kinetics-skeleton数据集。

前提条件

  • Python3(版本大于3.5)
  • PyTorch
  • Openpose(带Python API,仅用于演示)
  • 其他Python库可以通过运行pip install -r requirements.txt来安装

安装

 
1git clone https://github.com/yysijie/st-gcn.git; cd st-gcn
2cd torchlight; python setup.py install; cd ..

获取预训练模型 我们提供了ST-GCN的预训练模型权重。可以通过运行以下脚本来下载模型:

 
1bash tools/get_models.sh

您也可以从GoogleDrive或百度云获取模型,并手动将其放入./models目录下。

演示 您可以使用以下命令运行演示:

  • 离线姿态估计

     
    1python main.py demo_offline [--video ${视频路径}] [--openpose ${Openpose路径}]
  • 实时姿态估计

     
    1python main.py demo [--video ${视频路径}] [--openpose ${Openpose路径}]

可选参数:

  • PATH_TO_OPENPOSE: 如果Openpose Python API不在PYTHONPATH中,则需要此路径。
  • PATH_TO_VIDEO: 输入视频的文件名。

数据准备 我们在两个基于骨架的动作识别数据集上进行了实验:Kinetics-skeleton 和 NTU RGB+D。为了方便快速加载数据,在训练和测试前,数据集应转换为合适的文件结构。您可以从GoogleDrive下载预处理后的数据并解压文件:

 
1cd st-gcn
2unzip <st-gcn-processed-data.zip路径>

否则,如果您想自己处理原始数据,请参考以下指南。

  • Kinetics-skeleton Kinetics是一个基于视频的动作识别数据集,只提供原始视频剪辑而无骨架数据。为了获得关节位置,我们首先将所有视频调整为340x256的分辨率并将帧率转换为30 fps,然后通过Openpose从每帧中提取骨架。提取的骨架数据(Kinetics-skeleton,7.5GB)可以从GoogleDrive或百度云直接下载。

     

    解压后,通过以下命令重建数据库:

    1python tools/kinetics_gendata.py --data_path <Kinetics-skeleton路径>
  • NTU RGB+D NTU RGB+D可以从其官方网站下载。我们的实验只需要3D骨架模态(5.8GB)。之后,使用以下命令构建训练或评估所需的数据库:

    1python tools/ntu_gendata.py --data_path <nturgbd+d_skeletons路径>

    其中 <nturgbd+d_skeletons路径> 是您下载的NTU RGB+D数据集中3D骨架模态的位置。

测试预训练模型

  • 评估在Kinetics-skeleton上预训练的ST-GCN模型:

    1python main.py recognition -c config/st_gcn/kinetics-skeleton/test.yaml
  • 在NTU RGB+D上的跨视角评估:

    1python main.py recognition -c config/st_gcn/ntu-xview/test.yaml
  • 在NTU RGB+D上的跨主体评估:

    1python main.py recognition -c config/st_gcn/ntu-xsub/test.yaml

为了加速评估或修改批处理大小以减少内存成本,可以设置 --test_batch_size--device

1python main.py recognition -c <配置文件> --test_batch_size <批次大小> --device <gpu0> <gpu1> ...

结果 提供的模型预期Top-1准确度如下:

模型Kinetics-skeleton (%)NTU RGB+D (Cross View) (%)NTU RGB+D (Cross Subject) (%)
基线模型[1]20.383.174.3
ST-GCN (我们的模型)31.688.881.6

[1] Kim, T. S., and Reiter, A. 2017. Interpretable 3d human action analysis with temporal convolutional networks. In BNMW CVPRW.

训练 要训练一个新的ST-GCN模型,运行:

1python main.py recognition -c config/st_gcn/<dataset>/train.yaml [--work_dir <工作目录>]

其中 <dataset> 必须是ntu-xsub、ntu-xview或kinetics-skeleton,取决于您要使用的数据集。默认情况下,训练结果(包括模型权重、配置文件和日志文件)将保存在 ./work_dir 目录下,或如果您指定了 <工作目录> 则保存在该目录下。

您可以在命令行或配置文件中修改训练参数,如work_dir、batch_size、step、base_lr和device。优先级顺序为:命令行 > 配置文件 > 默认参数。更多信息,请使用 main.py -h 查看帮助。

最后,可以通过以下命令自定义模型评估:

1python main.py recognition -c config/st_gcn/<dataset>/test.yaml --weights <模型权重路径>

这篇关于用于基于骨架的动作识别的空间时间图卷积网络 ST-GCN (代码+数据集+模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135863

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE