临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

本文主要是介绍临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生信碱移

IRnet介绍

用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。

临床实践中常常遇到许多复杂的问题,常见的两种是:

  1. 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类);

  2. 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平;

尽管传统的机器学习提供了高效的建模预测与初步的特征重要评分,但是仍然缺乏一定的可解释性。也就是说,我们很难直接将疾病与基础的生物学过程连接。而这里不得不提到近几年在生物学领域越来越火的神经网络模型,由于其架构的灵活性使得可解释性有了很大的提升空间,一些嵌入了生物学基本过程的模型框架也被陆续提出。小编今天借花献佛,给各位佬哥佬姐分享一个神经网络架构IRnet,其利用先验的通路注释信息构建了一款图神经网络,于上个月初发表于Journal of Advanced Research[IF: 11.4] 期刊。

▲ DOI:10.1016/j.jare.2024.07.036

简要介绍一下,IRnet是一款可解释深度学习框架,用于预测患者对免疫疗法(尤其是免疫检查点抑制剂)的反应。IRnet的特点是不预先选择任何生物标记物,只需要输入患者的整个基因表达矩阵。具体点讲,该网络架构将通过"基因-通路"映射自主学习各种生物标记物的重要性,除了对于患者的预测结果以外,还可以获得三个层次的解释:通路重要性、通路相互作用重要性和基因重要性看到这里,小编心里里立马想到: 这不就是某些老铁最喜欢的,临床意义基础意义全都要吗?

图片

▲ IRnet模型架构的示意

小编接下来主要介绍一下IRnet的模型架构,其github仓如下,大家也可以自行深入了解:

  • https://github.com/yuexujiang/IRnet

IRnet的模型架构

① 首先,IRnet通过一个稀疏的全连接层将基因表达转化为通路嵌入(稀疏的原因则是因为基因只属于某些通路):

x_in = Input(shape=(n_genes,))  # 基因表达数据作为输入
x_drop1 = Dropout(x_dropRate)(x_in)  # dropout层
# 自定义的稀疏张量层SparseTF类,具体实现并不难,输出是通路水平的网络嵌入
mapping_layer = SparseTF(n_pathways, mapp, activation='elu', W_regularizer=L1(mapping_l1_reg),name='mapping', kernel_initializer='glorot_uniform',use_bias=True) 
layer2_output = mapping_layer(x_drop1)
layer2_res=Reshape([n_pathways,1])(layer2_output) # 重塑数据的形状

图片

▲ ①稀疏的全连接层将基因表达转换为通路嵌入,图中gn代表第n个基因,pm代表第m个通路。

② 随后,使用两层的图注意力网络学习通路的交互作用,再通过全局注意力池化机制获得整个图的特征表示:

a_in = Input(shape=(n_pathways,),sparse=True)  # 对接上方的数据输入
# 两层图注意力网络
x_1 = GATConv(gat1_channel,attn_heads=gat1_nhead,concat_heads=False,activation="tanh",return_attn_coef=False,dropout_rate=gat1_dropRate,kernel_regularizer=l2(gat1_l2_reg),attn_kernel_regularizer=l2(gat1_l2_reg),bias_regularizer=l2(gat1_l2_reg),bias_initializer='glorot_uniform',
)([layer2_res, a_in])  # 第一层图注意力网络,用于处理重塑后的映射输出和路径数据
x1bn = layers.BatchNormalization()(x_1)  # 应用批量归一化,以帮助网络更快、更稳定地学习
x_2,att = GATConv(gat2_channel,attn_heads=1,concat_heads=True,activation="tanh",return_attn_coef=True,dropout_rate=gat2_dropRate,kernel_regularizer=l2(gat2_l2_reg),attn_kernel_regularizer=l2(gat2_l2_reg),bias_regularizer=l2(gat2_l2_reg),bias_initializer='glorot_uniform',
)([x1bn, a_in])  # 第二层图注意力网络,继续处理第一层的输出,同时返回注意力系数
x2bn = layers.BatchNormalization()(x_2)  # 再次应用批量归一化
# 使用全局注意力池化来总结节点特征
attpool=GlobalAttentionPool(pool_channel, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=L1(pool_l1_reg))(x2bn)  

图片

▲ ②使用上一层的通路嵌入pm,根据KEGG的注释将其构建成一个网络结构,同时作为图注意力网络的框架。

③ 最后,使用全局注意力池化的特征表示,通过一个全连接层与softmax激活函数获得分类的输出。

#全连接层,处理池化后的特征
x_fc1 = Dense(dense_channel, activation="elu")(attpool)  
output = Dense(2, activation="softmax")(x_fc1)  # 输出层,使用softmax进行多分类

图片

▲ ③使用全局注意力池化的特征表示通过一个全连接层获得分类结果,并用于计算损失以进行参数优化。

模型的学习过程使用焦点损失(Focal Loss)函数,后者用于处理样本不平衡的问题。

④ 由于网络架构中嵌入了基因、通路的信息,所以训练好的网络还可以用于评估基因、通路、通路交互对与预测结果的重要程度(在这里也就是对于预测免疫治疗反应的重要性):

  • 通路重要性:基于全局注意力池化层中的注意力权重进行评估,为了简化分析,作者对病人维度和通路维度进行了平均。

  • 通路交互重要性:通过第二层图注意力网络(GAT)的注意力权重来衡量的,通路j的权重反映了其在所有邻接通路中的相对重要性。

  • 基因重要性:通过稀疏全连接层的学习权重来评估,该层模拟基因到通路的隶属关系。与病人特定的通路或通路交互重要性不同,一旦IRnet模型训练完成,基因重要性(权重)即固定,所以作者的github仓中也并没有给出基因重要性的预测

⑤ 下面是github文档简要介绍的使用方法:

python ./predict.py \  # 脚本
-input ./example_expression.txt \ # 表达矩阵
-output ./prediction_results/ \      # 结果输出路径
-treatment anti-PD1    # 预测反应类型# 使用介绍
#usage: predict.py [-h] -input INPUTFILE -output OUTPUTDIR -treatment DRUG#IRnet: Immunotherapy response prediction using pathway knowledge-informed
#graph neural network#optional arguments:
#  -h, --help         show this help message and exit
#  -input INPUTFILE   Gene expression matrix with values separated by Tab. Rows
#                     are named with gene symbols. Columns are named with
#                     patient IDs. (default: None)
#  -output OUTPUTDIR  The name of the output directory. (default: None)
#  -treatment DRUG    Specify the immunotherapy treatment target, either "anti-
#                     PD1", "anti-PDL1", or "anti-CTLA4" (default: None)

图片

▲ 结果一:通路的交互重要性,每个样本都有

图片

▲ 结果二:通路的重要性,每个样本都有

图片

▲ 结果三:患者的预测得分与免疫治疗预测结果

作者提供的代码结果很简单,并且没有相关的可视化结果。同时,环境配置以及使用上会有不少bug。对于没有太多编程基础的铁子,小编将其环境配置以及运行过程全程包装在了r语言中,并且增加了通路注释以及两种对结果的可视化方案

图片

▲ 通路名称转换以及top重要性可视化

图片

▲ top通路交互重要性的可视化

图片

▲ 通路交互重要性的表格,可自行使用cytoscape进行可视化

有点意思 

只用输入基因表达矩阵

当然训练是另外一回事

可惜这个模型没有提供基因重要性的计算

也没有提供完整的模型训练过程

同时也只是局限于免疫治疗预测

但是这些小编也可以做

二分类、回归、预后预测

就分享到这里了,欢迎关注!

这篇关于临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146696

相关文章

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot