临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

本文主要是介绍临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生信碱移

IRnet介绍

用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。

临床实践中常常遇到许多复杂的问题,常见的两种是:

  1. 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类);

  2. 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平;

尽管传统的机器学习提供了高效的建模预测与初步的特征重要评分,但是仍然缺乏一定的可解释性。也就是说,我们很难直接将疾病与基础的生物学过程连接。而这里不得不提到近几年在生物学领域越来越火的神经网络模型,由于其架构的灵活性使得可解释性有了很大的提升空间,一些嵌入了生物学基本过程的模型框架也被陆续提出。小编今天借花献佛,给各位佬哥佬姐分享一个神经网络架构IRnet,其利用先验的通路注释信息构建了一款图神经网络,于上个月初发表于Journal of Advanced Research[IF: 11.4] 期刊。

▲ DOI:10.1016/j.jare.2024.07.036

简要介绍一下,IRnet是一款可解释深度学习框架,用于预测患者对免疫疗法(尤其是免疫检查点抑制剂)的反应。IRnet的特点是不预先选择任何生物标记物,只需要输入患者的整个基因表达矩阵。具体点讲,该网络架构将通过"基因-通路"映射自主学习各种生物标记物的重要性,除了对于患者的预测结果以外,还可以获得三个层次的解释:通路重要性、通路相互作用重要性和基因重要性看到这里,小编心里里立马想到: 这不就是某些老铁最喜欢的,临床意义基础意义全都要吗?

图片

▲ IRnet模型架构的示意

小编接下来主要介绍一下IRnet的模型架构,其github仓如下,大家也可以自行深入了解:

  • https://github.com/yuexujiang/IRnet

IRnet的模型架构

① 首先,IRnet通过一个稀疏的全连接层将基因表达转化为通路嵌入(稀疏的原因则是因为基因只属于某些通路):

x_in = Input(shape=(n_genes,))  # 基因表达数据作为输入
x_drop1 = Dropout(x_dropRate)(x_in)  # dropout层
# 自定义的稀疏张量层SparseTF类,具体实现并不难,输出是通路水平的网络嵌入
mapping_layer = SparseTF(n_pathways, mapp, activation='elu', W_regularizer=L1(mapping_l1_reg),name='mapping', kernel_initializer='glorot_uniform',use_bias=True) 
layer2_output = mapping_layer(x_drop1)
layer2_res=Reshape([n_pathways,1])(layer2_output) # 重塑数据的形状

图片

▲ ①稀疏的全连接层将基因表达转换为通路嵌入,图中gn代表第n个基因,pm代表第m个通路。

② 随后,使用两层的图注意力网络学习通路的交互作用,再通过全局注意力池化机制获得整个图的特征表示:

a_in = Input(shape=(n_pathways,),sparse=True)  # 对接上方的数据输入
# 两层图注意力网络
x_1 = GATConv(gat1_channel,attn_heads=gat1_nhead,concat_heads=False,activation="tanh",return_attn_coef=False,dropout_rate=gat1_dropRate,kernel_regularizer=l2(gat1_l2_reg),attn_kernel_regularizer=l2(gat1_l2_reg),bias_regularizer=l2(gat1_l2_reg),bias_initializer='glorot_uniform',
)([layer2_res, a_in])  # 第一层图注意力网络,用于处理重塑后的映射输出和路径数据
x1bn = layers.BatchNormalization()(x_1)  # 应用批量归一化,以帮助网络更快、更稳定地学习
x_2,att = GATConv(gat2_channel,attn_heads=1,concat_heads=True,activation="tanh",return_attn_coef=True,dropout_rate=gat2_dropRate,kernel_regularizer=l2(gat2_l2_reg),attn_kernel_regularizer=l2(gat2_l2_reg),bias_regularizer=l2(gat2_l2_reg),bias_initializer='glorot_uniform',
)([x1bn, a_in])  # 第二层图注意力网络,继续处理第一层的输出,同时返回注意力系数
x2bn = layers.BatchNormalization()(x_2)  # 再次应用批量归一化
# 使用全局注意力池化来总结节点特征
attpool=GlobalAttentionPool(pool_channel, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=L1(pool_l1_reg))(x2bn)  

图片

▲ ②使用上一层的通路嵌入pm,根据KEGG的注释将其构建成一个网络结构,同时作为图注意力网络的框架。

③ 最后,使用全局注意力池化的特征表示,通过一个全连接层与softmax激活函数获得分类的输出。

#全连接层,处理池化后的特征
x_fc1 = Dense(dense_channel, activation="elu")(attpool)  
output = Dense(2, activation="softmax")(x_fc1)  # 输出层,使用softmax进行多分类

图片

▲ ③使用全局注意力池化的特征表示通过一个全连接层获得分类结果,并用于计算损失以进行参数优化。

模型的学习过程使用焦点损失(Focal Loss)函数,后者用于处理样本不平衡的问题。

④ 由于网络架构中嵌入了基因、通路的信息,所以训练好的网络还可以用于评估基因、通路、通路交互对与预测结果的重要程度(在这里也就是对于预测免疫治疗反应的重要性):

  • 通路重要性:基于全局注意力池化层中的注意力权重进行评估,为了简化分析,作者对病人维度和通路维度进行了平均。

  • 通路交互重要性:通过第二层图注意力网络(GAT)的注意力权重来衡量的,通路j的权重反映了其在所有邻接通路中的相对重要性。

  • 基因重要性:通过稀疏全连接层的学习权重来评估,该层模拟基因到通路的隶属关系。与病人特定的通路或通路交互重要性不同,一旦IRnet模型训练完成,基因重要性(权重)即固定,所以作者的github仓中也并没有给出基因重要性的预测

⑤ 下面是github文档简要介绍的使用方法:

python ./predict.py \  # 脚本
-input ./example_expression.txt \ # 表达矩阵
-output ./prediction_results/ \      # 结果输出路径
-treatment anti-PD1    # 预测反应类型# 使用介绍
#usage: predict.py [-h] -input INPUTFILE -output OUTPUTDIR -treatment DRUG#IRnet: Immunotherapy response prediction using pathway knowledge-informed
#graph neural network#optional arguments:
#  -h, --help         show this help message and exit
#  -input INPUTFILE   Gene expression matrix with values separated by Tab. Rows
#                     are named with gene symbols. Columns are named with
#                     patient IDs. (default: None)
#  -output OUTPUTDIR  The name of the output directory. (default: None)
#  -treatment DRUG    Specify the immunotherapy treatment target, either "anti-
#                     PD1", "anti-PDL1", or "anti-CTLA4" (default: None)

图片

▲ 结果一:通路的交互重要性,每个样本都有

图片

▲ 结果二:通路的重要性,每个样本都有

图片

▲ 结果三:患者的预测得分与免疫治疗预测结果

作者提供的代码结果很简单,并且没有相关的可视化结果。同时,环境配置以及使用上会有不少bug。对于没有太多编程基础的铁子,小编将其环境配置以及运行过程全程包装在了r语言中,并且增加了通路注释以及两种对结果的可视化方案

图片

▲ 通路名称转换以及top重要性可视化

图片

▲ top通路交互重要性的可视化

图片

▲ 通路交互重要性的表格,可自行使用cytoscape进行可视化

有点意思 

只用输入基因表达矩阵

当然训练是另外一回事

可惜这个模型没有提供基因重要性的计算

也没有提供完整的模型训练过程

同时也只是局限于免疫治疗预测

但是这些小编也可以做

二分类、回归、预后预测

就分享到这里了,欢迎关注!

这篇关于临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146696

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者