【python 图片搜索】python 快速计算两个图片的相似度

2024-09-07 06:18

本文主要是介绍【python 图片搜索】python 快速计算两个图片的相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、图片相似度检测算法原理
我们日常中处理的数据大多数是文本和图片,既然文本有文本相似度,图片肯定也有图片相似度呀,是不是。下面介绍图片相似度检测的算法:检查两个图片的相似度,一个简单而快速的算法:感知哈希算法(Perceptual Hash),通过某种提取特征的方式为每个图片计算一个指纹(哈希),这样对比两个图片相似与否就变成了对比两个指纹异同的问题。
二、应用

  • 相似图片搜索
  • 图片相似度比较
  • 百度识图
  • 图片比较

三、实现步骤和思路

Step1.缩小尺寸

将图片缩小到8*8的大小,这样做可以去除图片的细节,只保留结构和明暗等基本信息,同时摒弃不同尺寸和比例带来的图片差异。

Step2.灰度处理

把缩小后的图片转化为64级灰度图(每个像素只有64种颜色)。

Step3.计算平均值

计算所有64个像素的灰度平均值。

Step4.计算哈希

这里哈希的计算方法是:上面说的64个像素的灰度与平均值进行比较,大于或等于平均值记为1,小于记为0。

将每个像素的比较结果组合在一起成为一个64位的二进制整数,这个整数就是此图片的指纹。

Step5.对比哈希

不同图片对比的方法,就是对比它们的64位哈希中,有多少位不一样(汉明距离)。一般来说如果不同的位数不超过5,就说明两张图片很相似,如果大于10,就很可能是两张不同的图片。

这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。


# -*- coding:utf-8 -*-from functools import reduce
from PIL import Image# 计算图片的局部哈希值--pHash
def phash(img):""":param img: 图片:return: 返回图片的局部hash值"""img = img.resize((8, 8), Image.ANTIALIAS).convert('L')avg = reduce(lambda x, y: x + y, img.getdata()) / 64.hash_value=reduce(lambda x, y: x | (y[1] << y[0]), enumerate(map(lambda i: 0 if i < avg else 1, img.getdata())), 0)print(hash_value)return hash_value# 计算汉明距离:
def hamming_distance(a, b):""":param a: 图片1的hash值:param b: 图片2的hash值:return: 返回两个图片hash值的汉明距离"""hm_distance=bin(a ^ b).count('1')print(hm_distance)return hm_distance# 计算两个图片是否相似:
def is_imgs_similar(img1,img2):""":param img1: 图片1:param img2: 图片2:return:  True 图片相似  False 图片不相似"""return True if hamming_distance(phash(img1),phash(img2)) <= 5 else Falseif __name__ == '__main__':# 读取图片sensitive_pic = Image.open("3.jpg")target_pic = Image.open("4.jpg")# 比较图片相似度result=is_imgs_similar(target_pic, sensitive_pic)print(result)

在这里插入图片描述

两张不同的图片3和4运行结果:

15824809348783249859
18411139146200482779
24
FalseProcess finished with exit code 0

两张一样的图片1和2运行结果:

14384397865107178495
14384397865107178495
0
TrueProcess finished with exit code 0

封装计算相似度python实现:

# -*- encoding=utf-8 -*-from functools import reduce
from PIL import Image# 这种算法的优点是简单快速,不受图片大小缩放的影响,
# 缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。
# 所以,它的最佳用途是根据缩略图,找出原图。# 计算图片的局部哈希值--pHash
def phash(img):""":param img: 图片:return: 返回图片的局部hash值"""img = img.resize((8, 8), Image.ANTIALIAS).convert('L')avg = reduce(lambda x, y: x + y, img.getdata()) / 64.hash_value=reduce(lambda x, y: x | (y[1] << y[0]), enumerate(map(lambda i: 0 if i < avg else 1, img.getdata())), 0)return hash_value# 自定义计算两个图片相似度函数局部敏感哈希算法
def phash_img_similarity(img1_path,img2_path):""":param img1_path: 图片1路径:param img2_path: 图片2路径:return: 图片相似度"""# 读取图片img1 = Image.open(img1_path)img2 = Image.open(img2_path)# 计算两个图片的局部哈希值# 计算局部敏感哈希值img1_phash = str(phash(img1))img2_phash = str(phash(img2))# 打印局部敏感哈希值print(img1_phash)print(img2_phash)# 计算汉明距离distance = bin(phash(img1) ^ phash(img2)).count('1')print(distance)print(max(len(bin(phash(img1))), len(bin(phash(img1)))))similary = 1 - distance / max(len(bin(phash(img1))), len(bin(phash(img1))))print("两张图片相似度为:%s" % similary)if __name__ == '__main__':img1_path = r'F:\img_spam\test\3.png'img2_path = r'F:\img_spam\test\4.png'similary = phash_img_similarity(img1_path, img2_path)
E:\laidefa\python.exe F:/文本标签/图片反垃圾/感知哈希算法计算图片相似度.py
18446604991956385279
18446604991956385279
0
66
两张图片相似度为:1.0Process finished with exit code 0

这篇关于【python 图片搜索】python 快速计算两个图片的相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144291

相关文章

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空