特征值和特征向量的几何意义、计算及其性质

2024-06-20 18:08

本文主要是介绍特征值和特征向量的几何意义、计算及其性质,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://www.cnblogs.com/chaosimple/p/3179695.html

一、特征值和特征向量的几何意义

特征值和特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。

那么变换的效果是什么呢?这当然与方阵的构造有密切的关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维变量逆时针旋转30度。这时,我们可以思考一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量)。

综上所述,一个变换(或者说矩阵)的特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已。再想想特征向量的原始定义:

clip_image002

可以很容易看出,cx是方阵A对向量x进行变换后的结果,显然cx和x的方向相同。而且x是特征向量的话,ax也是特征向量(a是标量且不为零),所以特征向量不是一个向量而是一个向量族。

另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已。对一个变换而言,特征向量指明的方向才是很重要的,特征值不那么重要。虽然我们求这两个量时先求出特征值,但特征向量才是更本质的东西!特征向量是指经过指定变换(与特定矩阵相乘)后不发生方向改变的那些向量,特征值是指在经过这些变换后特征向量的伸缩的倍数

 

二、特征值和特征向量的计算

使用Matlab求矩阵的特征值和特征向量:

clip_image004

矩阵D的对角线元素存储的是A的所有特征值,而且是从小到大排列的。矩阵V的每一列存储的是相应的特征向量,因此V的最后一列存储的就是矩阵A的最大特征值对应的特征向量。

 

三、特征值和特征向量的性质

性质1. n阶方阵A=(aij)的所有特征根为l1,l2,…, ln(包括重根),则

 

性质2. 若 l 是可逆阵A的一个特征根,x为对应的特征向量,则 是A-1的一个特征根,x仍为对应的特征向量。

 

性质3. 若 l 是方阵A的一个特征根,x为对应的特征向量,则lm是Am的一个特征根,x仍为对应的特征向量。

 

性质4. 设 l1,l2,…, lm是方阵A的互不相同的特征值。xj是属于li 的特征向量( i=1,2,…,m),则 x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关 。

性质4可推广为:设 l1,l2,…, lm为方阵A的互不相同的特征值,x11,x12,…,x1,k1是属于l1的线性无关特征向量,……,xm1,xm2,…,xm,k1是属于l的线性无关特征向量。则向量组 x11,x12,…,x1,k1,…, xm1,xm2,…,xm,k1也是线性无关的。即对于互不相同特征值,取他们各自的线性无关的特征向量,则把这些特征向量合在一起的向量组仍是线性无关的。

 

 

对于任意一个矩阵,不同特征值对应的特征向量线性无关。

对于实对称矩阵或埃尔米特矩阵来说,不同特征值对应的特征向量必定正交(相互垂直)。

这篇关于特征值和特征向量的几何意义、计算及其性质的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078866

相关文章

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

poj 3304 几何

题目大意:给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。 解题思路:如果存在这样的直线,过投影相交点(或投影相交区域中的点)作直线的垂线,该垂线(也是直线)必定与每条线段相交,问题转化为问是否存在一条直线和所有线段相交。 若存在一条直线与所有线段相交,此时该直线必定经过这些线段的某两个端点,所以枚举任意两个端点即可。

POJ 2318 几何 POJ 2398

给出0 , 1 , 2 ... n 个盒子, 和m个点, 统计每个盒子里面的点的个数。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y

poj 2653 几何

按顺序给一系列的线段,问最终哪些线段处在顶端(俯视图是完整的)。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y ;Point(){}Po

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

计算数组的斜率,偏移,R2

模拟Excel中的R2的计算。         public bool fnCheckRear_R2(List<double[]> lRear, int iMinRear, int iMaxRear, ref double dR2)         {             bool bResult = true;             int n = 0;             dou