线性代数|机器学习-P32循环矩阵的特征向量-傅里叶矩阵

本文主要是介绍线性代数|机器学习-P32循环矩阵的特征向量-傅里叶矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 大纲
  • 2. 循环矩阵
    • 2.1 移位矩阵P
    • 2.2 P的特征值和特征向量
    • 2.3 循环卷积矩阵
    • 2.4 循环卷积计算
  • 3. 傅里叶矩阵

1. 大纲

  • 循环矩阵在机器学习,图像处理中的应用
  • 循环卷积矩阵的特征值,特征向量,卷积规则
  • 循环卷积矩阵多项式表达: C = c 0 I + c 1 P + c 2 P 2 + ⋯ + c n − 1 P n − 1 C=c_0 I+c_1P+c_2P^2+\cdots+c_{n-1}P^{n-1} C=c0I+c1P+c2P2++cn1Pn1
  • 离散傅里叶DFT介绍

2. 循环矩阵

2.1 移位矩阵P

我们定义一个移位矩阵P 表示如下:
P = [ 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 ] ; P x = [ 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = [ x 2 x 3 x 4 x 1 ] ; \begin{equation} P=\begin{bmatrix} 0&1&0&0\\\\ 0&0&1&0\\\\ 0&0&0&1\\\\ 1&0&0&0 \end{bmatrix};Px=\begin{bmatrix} 0&1&0&0\\\\ 0&0&1&0\\\\ 0&0&0&1\\\\ 1&0&0&0 \end{bmatrix}\begin{bmatrix} x_1\\\\ x_2\\\\ x_3\\\\ x_4 \end{bmatrix}=\begin{bmatrix} x_2\\\\ x_3\\\\ x_4\\\\ x_1\end{bmatrix}; \end{equation} P= 0001100001000010 ;Px= 0001100001000010 x1x2x3x4 = x2x3x4x1 ;

  • 那么我们可以将一个循环卷积矩阵C 分解为移位矩阵P的多项式之和:
    在这里插入图片描述

2.2 P的特征值和特征向量

我们根据P来定义其特征值和特征向量可得:
P x = λ x → x 2 = λ x 1 ; x 3 = λ x 2 ; x 4 = λ x 3 ; x 1 = λ x 4 ; \begin{equation} Px=\lambda x\to x_2=\lambda x_1; x_3=\lambda x_2; x_4=\lambda x_3; x_1=\lambda x_4; \end{equation} Px=λxx2=λx1;x3=λx2;x4=λx3;x1=λx4;

  • 整理可得:
    x 1 = λ 4 x 1 → ( 1 − λ 4 ) x 1 = 0 → λ 0 = 1 , λ 1 = i , λ 2 = − 1 , λ 3 = − i \begin{equation} x_1=\lambda ^4x_1\to (1-\lambda^4)x_1=0\to \lambda_0=1,\lambda_1=i,\lambda_2=-1,\lambda_3=-i \end{equation} x1=λ4x1(1λ4)x1=0λ0=1,λ1=i,λ2=1,λ3=i
  • 也就是说P的根为 Z N = 1 Z^N=1 ZN=1的根,这里是N=4,所以有4个根;
    在这里插入图片描述

2.3 循环卷积矩阵

我们有一个循环卷积矩阵C,n行n列,因为矩阵C的特殊性,其斜线上的元素相等,所以可得:
C = [ c 0 c 1 c 2 ⋯ c n − 1 c n − 1 c 0 c 1 ⋯ c n − 2 ⋮ ⋱ ⋱ ⋱ ⋮ c 1 c 2 c 3 ⋯ c 0 ] ; \begin{equation} C=\begin{bmatrix} c_0&c_1&c_2&\cdots&c_{n-1}\\\\ c_{n-1}&c_0&c_1&\cdots&c_{n-2}\\\\ \vdots&\ddots&\ddots&\ddots&\vdots\\\\ c_{1}&c_2&c_3&\cdots&c_{0} \end{bmatrix}; \end{equation} C= c0cn1c1c1c0c2c2c1c3cn1cn2c0 ;

  • 那么可以将上述循环矩阵C用移位矩阵P进行展开可得如下:
    C = c 0 I + c 1 P + c 2 P 2 + ⋯ + c n − 1 P n − 1 \begin{equation}C=c_0 I+c_1P+c_2P^2+\cdots+c_{n-1}P^{n-1}\end{equation} C=c0I+c1P+c2P2++cn1Pn1

2.4 循环卷积计算

假设我们有一个序列 x 1 ( n ) = { 1 , 2 , 3 } , x 2 ( n ) = { 5 , 0 , 4 } x_1(n)=\{1,2,3\},x_2(n)=\{5,0,4\} x1(n)={1,2,3},x2(n)={5,0,4},需要对其进行循环卷积计算,根据数字信号分析中可得:
x 1 ( n ) L ◯ x 2 ( n ) = [ ∑ m = 0 L − 1 x 1 ( m ) x 2 ( ( n − m ) ) L ] R L ( n ) \begin{equation} x_1(n)\textcircled{L} x_2(n)=[\sum_{m=0}^{L-1}x_1(m)x_2((n-m))_L]R_L(n) \end{equation} x1(n)Lx2(n)=[m=0L1x1(m)x2((nm))L]RL(n)

  • 转换成循环卷积如下:
    [ 5 4 0 0 5 4 4 0 5 ] [ 1 2 3 ] = [ 13 22 19 ] ; \begin{equation} \begin{bmatrix} 5&4&0\\\\ 0&5&4\\\\ 4&0&5 \end{bmatrix}\begin{bmatrix} 1\\\\ 2\\\\ 3 \end{bmatrix}=\begin{bmatrix} 13\\\\ 22\\\\ 19\end{bmatrix}; \end{equation} 504450045 123 = 132219 ;
  • 综上所述可得:两个序列的循环卷积运算可以转换为一个序列的循环卷积矩阵与另外一个序列的乘积。

3. 傅里叶矩阵

我们知道移位矩阵P的特征值为 z N = 1 z^N=1 zN=1的复数根,其特征向量如下:
q k = [ 1 , λ k , λ k 2 , ⋯ , λ k N − 1 ] ; λ k = e 2 π i N \begin{equation} q_k=\begin{bmatrix} 1,\lambda_k,\lambda_k^2,\cdots,\lambda_k^{N-1} \end{bmatrix};\lambda_k=\mathrm{e}^{\frac{2\pi i}{N}} \end{equation} qk=[1,λk,λk2,,λkN1];λk=eN2πi

  • 我们之前推导过对于任意的循环卷积矩阵C来说可以表示如下:
    C = c 0 I + c 1 P + c 2 P 2 + ⋯ + c n − 1 P n − 1 \begin{equation}C=c_0 I+c_1P+c_2P^2+\cdots+c_{n-1}P^{n-1}\end{equation} C=c0I+c1P+c2P2++cn1Pn1
  • 我们可得矩阵C的特征值和特征向量与P的特征值特征向量相同。我们两边同时乘以 q k q_k qk,且定义如下
    C q k = λ k ( C ) q k , P q k = λ k q k Cq_k=\lambda_k(C) q_k,Pq_k=\lambda_kq_k Cqk=λk(C)qk,Pqk=λkqk
    C q k = c 0 q k + c 1 P q k + c 2 P 2 q k + ⋯ + c n − 1 P n − 1 q k \begin{equation}Cq_k=c_0q_k+c_1Pq_k+c_2P^2q_k+\cdots+c_{n-1}P^{n-1}q_k\end{equation} Cqk=c0qk+c1Pqk+c2P2qk++cn1Pn1qk
  • 代入特征方程可得:
    λ k ( C ) q k = c 0 q k + c 1 P q k + c 2 P 2 q k + ⋯ + c n − 1 P n − 1 q k \begin{equation}\lambda_k(C)q_k=c_0q_k+c_1Pq_k+c_2P^2q_k+\cdots+c_{n-1}P^{n-1}q_k\end{equation} λk(C)qk=c0qk+c1Pqk+c2P2qk++cn1Pn1qk
  • 整理可得:
    λ k ( C ) q k = c 0 q k + c 1 λ k q k + c 2 λ k 2 q k + ⋯ + c n − 1 λ k n − 1 q k \begin{equation}\lambda_k(C)q_k=c_0q_k+c_1\lambda_kq_k+c_2\lambda_k^2q_k+\cdots+c_{n-1}\lambda_k^{n-1}q_k\end{equation} λk(C)qk=c0qk+c1λkqk+c2λk2qk++cn1λkn1qk
  • 整理可得:
    λ k ( C ) = c 0 + c 1 λ k + c 2 λ k 2 + ⋯ + c n − 1 λ k n − 1 \begin{equation}\lambda_k(C)=c_0+c_1\lambda_k+c_2\lambda_k^2+\cdots+c_{n-1}\lambda_k^{n-1}\end{equation} λk(C)=c0+c1λk+c2λk2++cn1λkn1
  • 我们知道: λ k = e 2 π k N = w k , w = e 2 π N \lambda_k=\mathrm{e}^{\frac{2\pi k}{N}}=w^k,w=\mathrm{e}^{\frac{2\pi }{N}} λk=eN2πk=wk,w=eN2π
  • 那么可得:
    在这里插入图片描述
  • 小结1:这么做的主要用于:[后续补充,要补充的逻辑思路太多了]
    两个序列的循环卷积为离散傅里叶 D F T 变换下的序列相乘 两个序列的循环卷积为离散傅里叶DFT变换下的序列相乘 两个序列的循环卷积为离散傅里叶DFT变换下的序列相乘
  • 小结2: 所有的循环卷积矩阵都可以分解为离散傅里叶矩阵F和系数序列c相乘,它们的特征向量一致。
    后续更新逻辑思维图 后续更新逻辑思维图 后续更新逻辑思维图

这篇关于线性代数|机器学习-P32循环矩阵的特征向量-傅里叶矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129157

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +