字符串的特征向量与KMP算法

2024-06-22 18:58

本文主要是介绍字符串的特征向量与KMP算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

字符串的特征向量就是由字符串各位置上的特征数构成的一个向量。设字符串为P,令Pi为从字符串首字母到第i个位置的前缀,则字符串P的i位置上的特征数就是Pi的首尾非空真子串匹配的最大长度。例如:字符串abcdaabcab的特征向量是(0,0,0,0,1,1,2,3,1,2)。其中第5个位置的特征数是1,因为P5是abcdaa,首尾非空真子串能够匹配的就是a;而第7个位置的特征数是3,因为P7是abcdaabc,首尾非空真子串能够匹配的是abc。0位置上的特征数显然为0。暴力法求特征向量显然是非常耗时的,实际上可以基于这样一个思路求特征向量:从0位置开始求特征数,i位置上的特征数是由之前位置的特征数决定的。

用Next数组表示字符串的特征向量。如上所示,假设Next[i-1]==x1,也就是说i-1位置上首尾x1个元素是匹配的。很显然,当P[i]==P[x1]时,i位置上首尾至少有x1+1个元素匹配,实际上就是x1+1个。

当P[i]!=P[x1]时,考查Next[x1-1],假设其值为x2,这说明在x1-1位置上首尾x2个元素相等,此时,如果P[i]==P[x2],则说明i位置首尾至少有x2+1个元素是匹配的,实际上就是x2+1个。如果P[i]!=P[x2],则可以考查Next[x2-1],依次类推。直到x的值为0,此时如果P[i]==P[x],则特征数为x+1也就是1,否则就是0。 上述过程并不是算法的充分条件,只是由特征向量推出的性质;当然理论上也早有证明,这个性质是可以用来求出特征向量的。
POJ2406是一道利用特征向量的简单题目。假设字符串s是另外一个字符串的t的n次方,即s是由t重复n次得到的,那么最后一个位置上的首尾匹配的真子串一定是s-t,而t的长度一定是s的长度减去s最后一个位置上的特征数,且s的长度一定是t长度的整数倍。这也是由n次方得到的性质,但是利用这个性质一样可以证明s一定是t的n次方。

//令字符串S=s^n,求最大的n
//例如aaaa = a^4 = (aa)^2,则答案是4
//如果S长度为L,s的长度为l,则S最后一个特征数一定是L-l
//而且L是l的n倍
#include <cstdio>
#include <cstring>
using namespace std;
#define SIZE 1000005void getNext(char const P[],int n,int next[]){next[0] = 0;for(int i=1;i<n;++i){int k = next[i-1];while( k > 0 && P[k] != P[i] ) k = next[k-1];next[i] = ( P[i] == P[k] ) ? k + 1 : 0;}return;
}char P[SIZE];
int Next[SIZE];
int main() {while( scanf("%s",P) ){if ( '.' == *P && '\0' == P[1] ) return 0;int len = strlen(P);getNext(P,len,Next);if ( len % ( len - Next[len-1] ) ) printf("1\n");else printf("%d\n",len/(len-Next[len-1]));}return 0;
}

令目标为T,模式为P,问P是否为T的子串,这就是字符串匹配问题。暴力法很容易想到,每当不匹配的时候,将P后移一个位置,再次尝试匹配。KMP算法的关键就在于当不匹配时,P是否只能往后移动一位?

上图很明显显示了:当Pi与对应的Ti字母不相等时,P可以往后移多位。假设next[i-1]==2,则P应该往后移动i-2位再进行匹配。一般的,应该往后移动i-next[i-1]位。例如:abcdaabcab的特征向量是(0000112312),假设T1是abcz….,则当比较到第3位的时候字母不匹配,此时应该把P后移3-next[2]也就是3位,再进行比较;假设T2是abcdaabcz…,则当比较到第8位的时候不匹配,此时应该将P后移到8-next[7]也就是5位,再开始比较。
不过,特别要注意的是:在上图中,P后移了i-next[i-1]位以后(假设next[i-1]是2),P0还需要与T[i-2]进行比较吗?P1还需要与T[i-1]进行比较吗?不需要,因为可以确定是相等的,只需从Ti和P2开始往下比较。所以很重要的一点:KMP算法中,T的字母只访问一次,T中已经比较过的字母不需要再次与P去比较,T的下标不存在回溯。所以KMP算法是线性时间的。对P而言,当Pi字母与T对应字母不匹配时,需要从P的第next[i-1]个字母重新开始比较。在上图中,就是要从第2个字母开始比较。在T2的例子中,T2是abcdaabcz…,P是abcdaabcad,当第8个字母a与T的字母z不匹配的时候,我们只需从P中的第3个字母d开始再跟T比较。
所以,我们可以重新定义特征数和特征向量,i位置的特征数就是当i位置的字母不匹配的时候,P的下标需要重新定位的位置。特别的当第0个位置不匹配时,令next[0]==-1,表示P的下标仍然维持在0,但T的下标要往后移一位。于是P: abcdaabcad的KMP匹配算法的特征向量是(-1,0,0,0,0,1,1,2,3,1)。
KMP算法仍然有优化的可能,当T3是abcdaaz…时,比较到第6个字母,P的下标应该回溯到几?按上述值应该是1,但其实可以回到0。假设T4是abcdz…,当比较到第4个字母不匹配时,P的下标应该回到几?可以回到0,但实际上T的这个字母不用再比较了,所以在P的下标回到0的同时,T的下标应该加1。这种操作恰好是特征向量为-1时应该进行的操作。

如上,令i的特征数是x1,即当Pi不匹配时,P下标应该回到x1。但是当P[i]==P[x1]时,下标还可以再往前。令x1位置的特征数是x2,则显然下标可以回到x2,当P[i]!=P[x2]时。否则,下标还可以往前,如此反复直到0位置。如果P[i]==P[0],则i位置的特征数应该是-1,表示此位置不匹配时,P的下标维持在0,而T的下标加1。字符串abcdaabcab优化过后的特征向量应该是(-1,0,0,0,-1,1,0,0,3,0)。
hdu1711是标准的KMP问题,只不过匹配的不是字符串,而是整数序列。

//KMP算法,匹配的不是字符序列,而是整数
#include <cstdio>
using namespace std;
int T[1000005];
int P[10005];
int Next[10005];
void getKMPNext(int const P[],int n,int next[]){next[0] = -1;int i = 0, k = -1;while( i < n ){while( k >= 0 && P[i] != P[k] )k = next[k];++i,++k;if ( i == n ) return;next[i] = ( P[i] == P[k] ) ? next[k] : k;}
}
//在T中搜索P,输出第一个找到的位置,否则输出-1
int KMP(int const T[],int tn,int const P[],int pn,int const next[]){if ( pn > tn ) return -1;int tp = 0, pp = 0;while( tp < tn ){if ( -1 == pp || T[tp] == P[pp] ) ++tp,++pp;else pp = next[pp];if ( pn == pp ) return tp - pp;}return -1;
}
int main() {int nofkase;scanf("%d",&nofkase);while(nofkase--){int tn,pn;scanf("%d%d",&tn,&pn);for(int i=0;i<tn;++i)scanf("%d",T+i);for(int i=0;i<pn;++i)scanf("%d",P+i);getKMPNext(P,pn,Next);//从1开始索引int t = KMP(T,tn,P,pn,Next);printf("%d\n",(-1==t)?-1:t+1);}return 0;
}

这篇关于字符串的特征向量与KMP算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085136

相关文章

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

C#从XmlDocument提取完整字符串的方法

《C#从XmlDocument提取完整字符串的方法》文章介绍了两种生成格式化XML字符串的方法,方法一使用`XmlDocument`的`OuterXml`属性,但输出的XML字符串不带格式,可读性差,... 方法1:通过XMLDocument的OuterXml属性,见XmlDocument类该方法获得的xm

JSON字符串转成java的Map对象详细步骤

《JSON字符串转成java的Map对象详细步骤》:本文主要介绍如何将JSON字符串转换为Java对象的步骤,包括定义Element类、使用Jackson库解析JSON和添加依赖,文中通过代码介绍... 目录步骤 1: 定义 Element 类步骤 2: 使用 Jackson 库解析 jsON步骤 3: 添

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python修改字符串值的三种方法

《python修改字符串值的三种方法》本文主要介绍了python修改字符串值的三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录第一种方法:第二种方法:第三种方法:在python中,字符串对象是不可变类型,所以我们没办法直接

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2