【线性代数】第六章:特征值与特征向量

2024-06-16 02:36

本文主要是介绍【线性代数】第六章:特征值与特征向量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一. 基本内容与重要结论
    • 1. 特征值、特征向量、特征方程的概念
    • 2. 矩阵相似
  • 二. 重要定理
    • 1. 特征向量的有限次变换,还是特征向量
    • 2. 特征值与特征矩阵的关系
    • 3. 特征值与特征向量的相关性
    • 4. 相似则有相同的特征值(只是必要条件)
    • 4.1. 相似的四个必要条件
    • 5. 矩阵对角化相关定理
      • 5.1. 可对角化的充要条件
      • 5.2. 实对称矩阵必可对角化
    • 6. **Schmidt**正交化方法

本章要求

  1. 要理解特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值、特征向量的方法.
  2. 要理解矩阵相似的概念,掌握相似矩阵的性质,搞清矩阵能相似对角化的条件,掌握将矩阵化为相似对角矩阵的方法.
  3. 要熟悉实对称矩阵特征值、特征向量的特殊性质,掌握用正交矩阵化实对称矩阵为对角矩阵的方法.

一. 基本内容与重要结论

1. 特征值、特征向量、特征方程的概念

在这里插入图片描述

 

跟齐次线性方程组结合 => 先求特征值然后再求特征向量
在这里插入图片描述

 

2. 矩阵相似

在这里插入图片描述

 

相似特性:

在这里插入图片描述

 

二. 重要定理

注意:每个特征值都会对应一个特征方程,通过特征方程来解对应特征值的特征向量。

1. 特征向量的有限次变换,还是特征向量

在这里插入图片描述

 

2. 特征值与特征矩阵的关系

在这里插入图片描述

 

3. 特征值与特征向量的相关性

在这里插入图片描述

 

在这里插入图片描述

 

4. 相似则有相同的特征值(只是必要条件)

在这里插入图片描述

 

4.1. 相似的四个必要条件

若矩阵A与矩阵B均为n阶方阵,则A与B相似的必要条件为:
1、A与B的特征值相同。
2、λE-A与λE-B等价。
3、tr(A)=tr(B)。 对角元素之和
4|A|=|B|

参考: 矩阵相似的四个必要条件及性质证明

 

5. 矩阵对角化相关定理

5.1. 可对角化的充要条件

在这里插入图片描述

 

在这里插入图片描述

 

每个特征值,该特征值的重数=其线性无关向量个数(因为每个特征值都会对应一个矩阵)。

在这里插入图片描述

 

5.2. 实对称矩阵必可对角化

在这里插入图片描述
 

如果两个实对称的矩阵的特征值相同,则说明两个矩阵相似。

根据实对称矩阵必能对角化+矩阵的对称性,传递性,能够说明,以上结论。

 
 

6. Schmidt正交化方法

在这里插入图片描述

 

这篇关于【线性代数】第六章:特征值与特征向量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065261

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

第六章习题11.输出以下图形

🌏个人博客:尹蓝锐的博客 希望文章能够给到初学的你一些启发~ 如果觉得文章对你有帮助的话,点赞 + 关注+ 收藏支持一下笔者吧~ 1、题目要求: 输出以下图形

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

Go语言设计与实现 学习笔记 第六章 并发编程(3)

系统调用 系统调用对于Go语言调度器的调度也有比较大的影响,为了处理这些特殊的系统调用,我们甚至专门在Goroutine中加入了_Gsyscall这一状态,Go语言通过Syscall和Rawsyscall等使用汇编语言编写的方法封装了操作系统提供的所有系统调用,其中Syscall在Linux 386上的实现如下: // 定义名为.Syscall的函数,该函数不允许栈分割,栈帧大小为0,有28字

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使

【鼠鼠学AI代码合集#5】线性代数

在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。 标量(Scalar)的基本操作 标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的 Python 代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。 代码实现: import torch# 定义两个标量x = torch.tens