特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

2024-09-08 01:04

本文主要是介绍特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

目录

前言

一、特征值分解

二、应用特征值分解对图片进行压缩

三、矩阵的奇异值分解

四、应用奇异值分解对图片进行压缩

五、MATLAB仿真代码


前言

        学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分解的效果要远好于特征值分解,本文在此简要记录一下。


提示:以下是本篇文章正文内容,欢迎各位阅读,转载请附上链接。

一、特征值分解

特征值分解英文缩写为EVD,全称为eigenvalue decomposition。

如果说一个向量\textbf{v}是m×m阶方阵\textbf{A}的特征向量,将一定可以表示成下面的形式:

\textbf{A}\textbf{v}=\lambda \textbf{v}

这种形式在数学上的含义:描述的是矩阵对向量的变换效果只有拉伸,没有旋转。(因为这个值是一个数值),这时候就被称为特征向量对应的特征值。

那么方阵\textbf{A}可以表示成

\textbf{A}=(\lambda_1\textbf{v}_1,\lambda_2\textbf{v}_2,\ldots,\lambda_m\textbf{v}_m)=(\textbf{v}_1,\textbf{v}_2,\ldots,\textbf{v}_m)\begin{bmatrix}\lambda_1&\ldots&0\\\vdots&\ddots&\vdots\\0&\ldots&\lambda_m\end{bmatrix}

\textbf{AV}=\textbf{V}\Lambda

那么就可以得到方阵\textbf{A}的特征分解公式:

\textbf{A}=\textbf{V}\Lambda \textbf{V}^{-1}

总结:特征分解,可以得到个m特征向量和特征值,利用这m个特征(代表这个矩阵最重要的特征),就可以近似这个矩阵。

二、应用特征值分解对图片进行压缩

假设原图大小为m×m,保留前k个特征值需要存储的点数为m×k+k+k×m,定义压缩率为:

r=(m×k+k+k×m)/(m×m)。

下面是一张大小为1024×1024大小的图片。

保留前10个特征值(压缩率为0.0196)可得到下图:

保留前100个特征值(压缩率为0.2048)可得到下图:

保留前200个特征值(压缩率为0.4288)可得到下图:

保留前500个特征值(压缩率为1.2150)可得到下图:

保留前988个特征值(压缩率为2.8606)可得到下图:

总结:这张原始图片的秩为988,发现保留前988个特征值就能完全恢复原图像,但是会发现保留特征值个数太多,其实并没有起到压缩的作用。因此特征值分解的确能压缩图片,但是恢复的效果不是很好,而且仅仅适用于方阵。所以接下来继续介绍矩阵的奇异值分解。

三、矩阵的奇异值分解

奇异值分解英文缩写为SVD,全称为singular value decomposition。

先上结论:对于任意一个矩阵m×n阶矩阵\textbf{A},我们都可以将它分解为

\textbf{A}=\textbf{U}\sum \textbf{V}^{T}

其中U,V是正交矩阵,∑是对角矩阵,其主对角线上的每个值我们称为奇异值。

具体原理推导可以参考文章:奇异值分解(SVD分解)———超详细讲解-CSDN博客

本文重在应用。

四、应用奇异值分解对图片进行压缩

假设原图大小为m×n,保留前k个奇异值需要存储的点数为m×k+k+k×n,定义压缩率为:

r=(m×k+k+k×n)/(m×n)。

还是刚才那张大小为1024×1024大小的图片。

保留前10个奇异值(压缩率为0.0195)可得到下图:

保留前100个奇异值(压缩率为0.1954)可得到下图:

保留前200个奇异值(压缩率为0.3908)可得到下图:

保留前300个奇异值(压缩率为0.5862)可得到下图:

总结:可以看出奇异值分解的效果比特征值分解好的多,能在起到压缩大小的情况下还能比较好的保留原图像的效果。

五、MATLAB仿真代码

https://download.csdn.net/download/m0_66360845/89724139icon-default.png?t=O83Ahttps://download.csdn.net/download/m0_66360845/89724139

这篇关于特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146671

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

基于Python开发批量提取Excel图片的小工具

《基于Python开发批量提取Excel图片的小工具》这篇文章主要为大家详细介绍了如何使用Python中的openpyxl库开发一个小工具,可以实现批量提取Excel图片,有需要的小伙伴可以参考一下... 目前有一个需求,就是批量读取当前目录下所有文件夹里的Excel文件,去获取出Excel文件中的图片,并

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时