特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

2024-09-08 01:04

本文主要是介绍特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

目录

前言

一、特征值分解

二、应用特征值分解对图片进行压缩

三、矩阵的奇异值分解

四、应用奇异值分解对图片进行压缩

五、MATLAB仿真代码


前言

        学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分解的效果要远好于特征值分解,本文在此简要记录一下。


提示:以下是本篇文章正文内容,欢迎各位阅读,转载请附上链接。

一、特征值分解

特征值分解英文缩写为EVD,全称为eigenvalue decomposition。

如果说一个向量\textbf{v}是m×m阶方阵\textbf{A}的特征向量,将一定可以表示成下面的形式:

\textbf{A}\textbf{v}=\lambda \textbf{v}

这种形式在数学上的含义:描述的是矩阵对向量的变换效果只有拉伸,没有旋转。(因为这个值是一个数值),这时候就被称为特征向量对应的特征值。

那么方阵\textbf{A}可以表示成

\textbf{A}=(\lambda_1\textbf{v}_1,\lambda_2\textbf{v}_2,\ldots,\lambda_m\textbf{v}_m)=(\textbf{v}_1,\textbf{v}_2,\ldots,\textbf{v}_m)\begin{bmatrix}\lambda_1&\ldots&0\\\vdots&\ddots&\vdots\\0&\ldots&\lambda_m\end{bmatrix}

\textbf{AV}=\textbf{V}\Lambda

那么就可以得到方阵\textbf{A}的特征分解公式:

\textbf{A}=\textbf{V}\Lambda \textbf{V}^{-1}

总结:特征分解,可以得到个m特征向量和特征值,利用这m个特征(代表这个矩阵最重要的特征),就可以近似这个矩阵。

二、应用特征值分解对图片进行压缩

假设原图大小为m×m,保留前k个特征值需要存储的点数为m×k+k+k×m,定义压缩率为:

r=(m×k+k+k×m)/(m×m)。

下面是一张大小为1024×1024大小的图片。

保留前10个特征值(压缩率为0.0196)可得到下图:

保留前100个特征值(压缩率为0.2048)可得到下图:

保留前200个特征值(压缩率为0.4288)可得到下图:

保留前500个特征值(压缩率为1.2150)可得到下图:

保留前988个特征值(压缩率为2.8606)可得到下图:

总结:这张原始图片的秩为988,发现保留前988个特征值就能完全恢复原图像,但是会发现保留特征值个数太多,其实并没有起到压缩的作用。因此特征值分解的确能压缩图片,但是恢复的效果不是很好,而且仅仅适用于方阵。所以接下来继续介绍矩阵的奇异值分解。

三、矩阵的奇异值分解

奇异值分解英文缩写为SVD,全称为singular value decomposition。

先上结论:对于任意一个矩阵m×n阶矩阵\textbf{A},我们都可以将它分解为

\textbf{A}=\textbf{U}\sum \textbf{V}^{T}

其中U,V是正交矩阵,∑是对角矩阵,其主对角线上的每个值我们称为奇异值。

具体原理推导可以参考文章:奇异值分解(SVD分解)———超详细讲解-CSDN博客

本文重在应用。

四、应用奇异值分解对图片进行压缩

假设原图大小为m×n,保留前k个奇异值需要存储的点数为m×k+k+k×n,定义压缩率为:

r=(m×k+k+k×n)/(m×n)。

还是刚才那张大小为1024×1024大小的图片。

保留前10个奇异值(压缩率为0.0195)可得到下图:

保留前100个奇异值(压缩率为0.1954)可得到下图:

保留前200个奇异值(压缩率为0.3908)可得到下图:

保留前300个奇异值(压缩率为0.5862)可得到下图:

总结:可以看出奇异值分解的效果比特征值分解好的多,能在起到压缩大小的情况下还能比较好的保留原图像的效果。

五、MATLAB仿真代码

https://download.csdn.net/download/m0_66360845/89724139icon-default.png?t=O83Ahttps://download.csdn.net/download/m0_66360845/89724139

这篇关于特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146671

相关文章

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6