特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

2024-09-08 01:04

本文主要是介绍特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

目录

前言

一、特征值分解

二、应用特征值分解对图片进行压缩

三、矩阵的奇异值分解

四、应用奇异值分解对图片进行压缩

五、MATLAB仿真代码


前言

        学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分解的效果要远好于特征值分解,本文在此简要记录一下。


提示:以下是本篇文章正文内容,欢迎各位阅读,转载请附上链接。

一、特征值分解

特征值分解英文缩写为EVD,全称为eigenvalue decomposition。

如果说一个向量\textbf{v}是m×m阶方阵\textbf{A}的特征向量,将一定可以表示成下面的形式:

\textbf{A}\textbf{v}=\lambda \textbf{v}

这种形式在数学上的含义:描述的是矩阵对向量的变换效果只有拉伸,没有旋转。(因为这个值是一个数值),这时候就被称为特征向量对应的特征值。

那么方阵\textbf{A}可以表示成

\textbf{A}=(\lambda_1\textbf{v}_1,\lambda_2\textbf{v}_2,\ldots,\lambda_m\textbf{v}_m)=(\textbf{v}_1,\textbf{v}_2,\ldots,\textbf{v}_m)\begin{bmatrix}\lambda_1&\ldots&0\\\vdots&\ddots&\vdots\\0&\ldots&\lambda_m\end{bmatrix}

\textbf{AV}=\textbf{V}\Lambda

那么就可以得到方阵\textbf{A}的特征分解公式:

\textbf{A}=\textbf{V}\Lambda \textbf{V}^{-1}

总结:特征分解,可以得到个m特征向量和特征值,利用这m个特征(代表这个矩阵最重要的特征),就可以近似这个矩阵。

二、应用特征值分解对图片进行压缩

假设原图大小为m×m,保留前k个特征值需要存储的点数为m×k+k+k×m,定义压缩率为:

r=(m×k+k+k×m)/(m×m)。

下面是一张大小为1024×1024大小的图片。

保留前10个特征值(压缩率为0.0196)可得到下图:

保留前100个特征值(压缩率为0.2048)可得到下图:

保留前200个特征值(压缩率为0.4288)可得到下图:

保留前500个特征值(压缩率为1.2150)可得到下图:

保留前988个特征值(压缩率为2.8606)可得到下图:

总结:这张原始图片的秩为988,发现保留前988个特征值就能完全恢复原图像,但是会发现保留特征值个数太多,其实并没有起到压缩的作用。因此特征值分解的确能压缩图片,但是恢复的效果不是很好,而且仅仅适用于方阵。所以接下来继续介绍矩阵的奇异值分解。

三、矩阵的奇异值分解

奇异值分解英文缩写为SVD,全称为singular value decomposition。

先上结论:对于任意一个矩阵m×n阶矩阵\textbf{A},我们都可以将它分解为

\textbf{A}=\textbf{U}\sum \textbf{V}^{T}

其中U,V是正交矩阵,∑是对角矩阵,其主对角线上的每个值我们称为奇异值。

具体原理推导可以参考文章:奇异值分解(SVD分解)———超详细讲解-CSDN博客

本文重在应用。

四、应用奇异值分解对图片进行压缩

假设原图大小为m×n,保留前k个奇异值需要存储的点数为m×k+k+k×n,定义压缩率为:

r=(m×k+k+k×n)/(m×n)。

还是刚才那张大小为1024×1024大小的图片。

保留前10个奇异值(压缩率为0.0195)可得到下图:

保留前100个奇异值(压缩率为0.1954)可得到下图:

保留前200个奇异值(压缩率为0.3908)可得到下图:

保留前300个奇异值(压缩率为0.5862)可得到下图:

总结:可以看出奇异值分解的效果比特征值分解好的多,能在起到压缩大小的情况下还能比较好的保留原图像的效果。

五、MATLAB仿真代码

https://download.csdn.net/download/m0_66360845/89724139icon-default.png?t=O83Ahttps://download.csdn.net/download/m0_66360845/89724139

这篇关于特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146671

相关文章

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,