特征向量归一化

2024-04-29 05:58
文章标签 归一化 特征向量

本文主要是介绍特征向量归一化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在使用KNN之前需要对所有的变量进行归一化处理。下面介绍几种归一化的方法:

1、线性函数转换,表达式如下:

y=(x-MinValue)/(MaxValue-MinValue)

2、对数函数转换,表达式如下:

y=log10 (x)

3、反余切函数转换 ,表达式如下:

y=arctan(x)*2/PI

4、减去均值,乘以方差

y=(x-means)/ variance

这篇关于特征向量归一化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945264

相关文章

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使

处理特征向量和离散特征

在最新的腾讯的社交广告大赛中,数据如下,如何处理这种向量的特征 比如intersets1,interests2.... LBS,950,age,4,carrier,1,consumptionAbility,2,ct,3 1,education,7,gender,2,interest1,93 70 77 86 109 47 75 69 45 8 29 49 83 6 46 36

【数据分享】2000—2023年我国省市县三级逐月归一化植被指数(NDVI)数据(Shp/Excel格式)

之前我们分享过2000—2023年逐月归一化植被指数(NDVI)栅格数据(可查看之前的文章获悉详情),该数据来源于NASA定期发布的MOD13A3数据集!很多小伙伴拿到数据后反馈栅格数据不太方便使用,问我们能不能把数据处理为更方便使用的Shp和Excel格式的数据! 我们特地对数值在-0.2—1之间的NDVI栅格数据进行了处理,将2000-2023年逐月的归一化植被指数栅格分别按照我国省级行政边

深度学习速通系列:归一化和批量归一化

在深度学习中,归一化和批量归一化是两种常用的技术,它们有助于提高模型的训练效率和性能。下面详细解释这两种技术: 归一化(Normalization) 归一化是指将数据的数值范围调整到一个特定的区间,通常是[0, 1]或者[-1, 1],或者使其具有零均值和单位方差。这样做的目的是减少不同特征之间的数值范围差异,使得模型训练更加稳定和高效。 常见的归一化方法包括: 最小-最大归一化(Min

【无标题】【Datawhale X 李宏毅苹果书 AI夏令营】批量归一化

1、批量归一化的作用 批量归一化(Batch Normalization,BN)的把误差曲面变得平滑,使训练能够得到快速收敛; 训练过程的优化:使用自适应学习率等比较进阶的优化训练方法; 训练对象的优化:批量归一化可以改变误差表面,让误差表面比较不崎岖 参数 w i w_i wi​是指训练参数或者训练的目标 1.1 特征归一化 当输入的特征,每一个维度的值,它的范围差距很大的时候,我们就可能

MATLAB eig 函数简介:计算特征值和特征向量

在数据科学、工程学和数学中,特征值和特征向量是理解和分析矩阵行为的核心概念。MATLAB 的 eig 函数是处理这些概念的强大工具。本文将介绍 eig 函数的基本用法,并通过示例展示如何使用它来计算特征值和特征向量。 什么是特征值和特征向量? 在矩阵分析中,特征值和特征向量帮助我们理解一个矩阵的性质。例如,在物理学中,它们可以用来描述系统的稳定性;在机器学习中,它们被用于数据降维和特征提取。

Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task3-批量归一化+卷积神经网络

目录 1.批量归一化1.1 考虑深度学习1.2 测试时的批量归一化1.3 内部协变量偏移 2.卷积神经网络2.1 观察 1:检测模式不需要整张图像2.2 简化 1:感受野2.3 观察 2:同样的模式可能会出现在图像的不同区域2.4 简化 2:共享参数2.5 简化 1 和 2 的总结2.6 观察 3:下采样不影响模式检测2.7 简化 3:汇聚2.8 卷积神经网络的应用:下围棋 1.

矩阵的特征值和特征向量的雅克比算法C/C++实现

矩阵的特征值和特征向量是线性代数以及矩阵论中非常重要的一个概念。在遥感领域也是经常用到,比如多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量。 根据普通线性代数中的概念,特征值和特征向量可以用传统的方法求得,但是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量。 雅克比方法用于求实对称阵的全部特征值、特征向量。 对

Pytorch中不同的Norm归一化详细讲解

在做项目或者看论文时,总是能看到Norm这个关键的Layer,但是不同的Norm Layer具有不同的作用,准备好接招了吗?(本文结论全部根据pytorch官方文档得出,请放心食用) 一. LayerNorm LayerNorm的公示如下: y = x − E [ x ] Var ⁡ [ x ] + ϵ ∗ γ + β y=\frac{x-\mathrm{E}[x]}{\sqrt{\op

波导模式分析-归一化截止波数

归一化截止波数是指波导或传输线中的截止波数相对特定参考波数的归一化值。通常在波导分析中,它通过与自由空间波数的比值来表示。你可以根据给定的截止频率来计算归一化截止波数。 截止波数: 对于某一传播模式(如TE、TM模式),波导中的截止波数与截止频率之间的关系是: 其中: 是波导中的截止波数是波导中的截止频率是相应模式下的相速度 相速度: 相速度(Phase Velocity)是在波动