Depth-First深度优先、Breadth-First广度优先、Iterative Deepening迭代深入、Uniform Cost代价一致搜索算法的规则及基于n叉树的时间复杂度空间复杂度比较

本文主要是介绍Depth-First深度优先、Breadth-First广度优先、Iterative Deepening迭代深入、Uniform Cost代价一致搜索算法的规则及基于n叉树的时间复杂度空间复杂度比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Depth-First深度优先、Breadth-First广度优先、Iterative Deepening迭代深入、Uniform Cost代价一致搜索算法

分为两部分介绍:

  1. 四种算法的遍历规则
  2. 基于n叉树的时间复杂度与空间复杂度比较
四种算法的遍历规则

使用下图案例来比较四种算法的遍历规则:
在这里插入图片描述

1. Depth-First Search 深度优先算法

策略:优先遍历最深节点
实现:存贮邻接点使用LIFO stack后进先出的栈

2. Breadth-First Search 广度优先算法

策略:优先遍历最浅的一层节点,从上自下,一层层遍历
实现:存贮邻接点使用FIFO queue先入先出数列

在这里插入图片描述在这里插入图片描述
3. Iterative Deepening迭代加深算法

限制一个深度d1用深度优先算法遍历,如果没有目标
限制一个深度d2用深度优先算法遍历,如果没有目标
限制一个深度d3…

在这里插入图片描述在这里插入图片描述
4. Uniform Cost Search代价一致算法

策略:确定邻接节点的集合,从中选取,优先添加花费最小的节点(注意图三优先选取邻接节点中最小的e,即使目标节点已经邻接表中,图四不同颜色表示邻接节点集合范围)
实现:存贮邻接点使用Priority queue优先级数列(优先级为:累计成本)

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
基于n叉树的时间复杂度与空间复杂度比较

用下图b叉树来比较四种算法的时间复杂度与空间复杂度(b是子节点个数,m是b叉树的层数,总的节点数: 1 + b + b 2 1+b+b^2 1+b+b2+… + b m +b^m +bm = O ( b m ) =O(b^m) =O(bm)
在这里插入图片描述

1. Depth-First Search 深度优先算法

时间复杂度:O( b m b^m bm),考虑最坏情况目标在树的右下角,所以需要遍历所有节点
在这里插入图片描述
空间复杂度:O(bm),空间复杂度也就是存贮邻接点的大小,LIFO stack后进先出的栈的容量,考虑最坏情况如图遍历到m层每一层需要存贮相邻的b个节点,故节点个数为bm
在这里插入图片描述

2. Breadth-First Search 广度优先算法

时间复杂度: O ( b s ) O(b^s) O(bs),引入新变量s,即达到目标的最浅层数,故时间复杂度为遍历目标节点前的所有节点 b s b^s bs
在这里插入图片描述
空间复杂度: O ( b s ) O(b^s) O(bs),邻接节点即每一层,考虑最坏情况在s层时,节点个数为 b s b^s bs
在这里插入图片描述

3. Iterative Deepening迭代加深算法

时间复杂度:O ( b s ) (b^s) (bs),同广度优先算法
空间复杂度: O ( b ∗ s ) O(b*s) O(bs),同深度优先算法,但最差情况由第m层变为找到目标的s层
同时汲取了深度优先算法的空间复杂度优势,及广度优先算法的时间shallow-solution较浅情况优势
在这里插入图片描述

4. Uniform Cost Search代价一致算法

时间复杂度:在这里插入图片描述,C是代价, C ∗ C* C是代价的最优值, ϵ \epsilon ϵ指每一步代价至少为,有效深度(effective depth)大约为层C*/ ϵ \epsilon ϵ
空间复杂度:在这里插入图片描述

在这里插入图片描述在这里插入图片描述

这篇关于Depth-First深度优先、Breadth-First广度优先、Iterative Deepening迭代深入、Uniform Cost代价一致搜索算法的规则及基于n叉树的时间复杂度空间复杂度比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/270551

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit