深入探索蒙特卡洛树搜索(MCTS):原理、应用与优化 引言 在人工智能与游戏开发领域,蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)作为一种高效的启发式搜索算法,凭借其卓越的性能和广泛的应用前景,引起了业界的广泛关注。本文旨在深入探讨MCTS的基本原理、核心机制、应用领域以及优化策略,为读者提供一份详尽的技术指南。 MCTS基本原理 定义与核心思想 MC
📜 文献卡 题目: Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B作者: Di Zhang; Xiaoshui Huang; Dongzhan Zhou; Yuqiang Li; Wanli OuyangDOI: 10.48550/a
Monte Carlo/Simulation方法 在统计上,样本数量是一个很重要的问题,在处理问题(如计算样本均值)的过程中,样本数量越多越好。但是在实际中,样本往往是稀缺的,获取数据就要付出代价。在贝叶斯理论中,情况又有所变化,X作为样本数据,其数量似乎不会影响问题的分析,因为我们产生的伪随机数是服从分布fθX 的,理论上只要能够产生这样的随机数,那么随机数的个数完全由我们自己决定。即
import random import math import time s = eval(input("请输入取点总数:")) hits = 0.0 start = time.perf_counter() for i in range(s): x,y = random.random(),random.random() dist = math.sqrt