使用Metropolis蒙特卡洛方法的原子模拟

2024-06-22 22:44

本文主要是介绍使用Metropolis蒙特卡洛方法的原子模拟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 1.蒙特卡罗方法的目标
        • 2.热力学系综
        • 3.连续体系
        • 4.Metropolis算法
          • 1.Metropolis算法介绍
          • 2.Metropolis算法思路
        • 5.原子体系的蒙特卡洛算法
          • 1.算法的基本思想
          • 2.算法的实现过程

1.蒙特卡罗方法的目标
  • 蒙特卡罗方法可以做什么?
    提供材料的热力学信息
    评估整体的平均值(能量、压力等)。
  • 蒙特卡罗方法不能做什么?
    提供材料的动力学信息(例如:扩散常数)
2.热力学系综
  • 强度性质  广延性质
    强度性质(intensive property)是不随物质多少或系统大小而改变的物理性质。
    广延性质(extensive property)是一种物理性质,系统中此性质的量可由组成此系统所有子系统中对应性质的量相加而得。
  • 热力学系综定义了哪些热力学量是受限制的,以及哪些热力学量是自由变化的。
  • 微正则系综
    在微正则系综(NVE)中,系统的所有可能状态都具有相同的能量 E,因此都具有相同的概率。
3.连续体系
  • 对于原子或分子系统,微观状态的数量几乎是无限的,因此将总和替换为一组积分
    ρ ( r N ) = e − U ( r N ) / k B T Z N V T Z N V T = ∫ e − U ( r N ) / k B T d r N \rho(r^{N})=\frac{e^{-U(r^{N})}/k_{B}T}{Z_{NVT}}\quad\quad\quad Z_{NVT}=\int e^{-U(r^{N})/k_{B}T}dr^{N} ρ(rN)=ZNVTeU(rN)/kBTZNVT=eU(rN)/kBTdrN
        例如:势能U的平均值:
    < U > = 1 Z N V T ∫ e − U ( r N ) / k B T U ( r N ) d r N <U>=\frac{1}{Z_{NVT}}\int e^{-U(r^{N})/k_{B}T}U(r^{N})dr^{N} <U>=ZNVT1eU(rN)/kBTU(rN)drN
        为了评估这个物理量,应该先计算所有状态的能量并评估相应的概率。然而,大多数状态具有很高能量,并因此极不可能发生(这是一种浪费时间的做法)。
        为了有效地评估该值,应该只对那些合理的少数状态进行求和,并排除其他状态。
4.Metropolis算法
1.Metropolis算法介绍

< U > = 1 Z N V T ∫ e − U ( r N ) / k B T U ( r N ) d r N <U>=\frac{1}{Z_{NVT}}\int e^{-U(r^{N})/k_{B}T}U(r^{N})dr^{N} <U>=ZNVT1eU(rN)/kBTU(rN)drN

  • 当我们需要求解一个 3N 维的积分时,
    可以使用蒙特卡罗方法,通过在一个空间内进行随机抽样,该空间包含积分定义区域的体积,统计哪些点在该体积内哪些点不在该体积内来实现。
    ρ ( r N ) = e − U ( r N ) / k B T Z N V T \rho(r^{N})=\frac{e^{-U(r^{N})}/k_{B}T}{Z_{NVT}} ρ(rN)=ZNVTeU(rN)/kBT

  • Metropolis算法(1953年)是一种对构型空间进行采样的方法,其采样方式是以麦克斯韦分布给出的概率ρ "访问 "给定状态。
    该方法的思路:在具有合理概率的状态集合中计算,得出该物理量的平均值

  • Metropolis算法可以得到能量分布曲线,并提供具有合理概率的构型列表。得出的构型列表称为轨迹

2.Metropolis算法思路
  • Metropolis算法的方法思路:
      1.从给定的随机构型开始
      2.进行一次试探性移动以获得新的构型
      3.将新构型与之前构型进行比较,根据概率来判断是否将新构型添加到轨迹中。
    ρ β ρ α = e − E β / k β T Q Q e − E α / k β T = e − ( E β − E α ) / k B T \frac{\rho_{\beta}}{\rho_{\alpha}}=\frac{e^{-E_{\beta}/k_{\beta}T}}{Q}\frac{Q}{e^{-E_{\alpha}/k_{\beta}T}}=e^{-(E_{\beta}-E_{\alpha})/k_{B}T} ραρβ=QeEβ/kβTeEα/kβTQ=e(EβEα)/kBT

  • 轨迹上添加新构型的概率:
      1.基于麦克斯韦分布的构型,其试探性移动(从配置i到配置i+1)将根据以下规则被接受:
         当 Δ E i , i + 1 ≤ 0 \Delta E_{i,i+1}\le0 ΔEi,i+10时,由于概率 e − Δ E i , i + 1 / k β T ≥ 1 e^{-\Delta E_{i,i+1}/k_{\beta}T}\ge1 eΔEi,i+1/kβT1而被接受
         当 Δ E i , i + 1 > 0 \Delta E_{i,i+1}>0 ΔEi,i+1>0时,以概率 e − Δ E i , i + 1 / k β T e^{-\Delta E_{i,i+1}/k_{\beta}T} eΔEi,i+1/kβT接受移动
         (可以通过生成介于0和1之间的随机数,并将其与设定的概率进行比较,来决定是否接受给定概率下的新构型。)
      2.通过多次重复此过程,可以生成一系列构型 {i = 1…N},其特征为能量 Ei,这些构型总体上具有合理的概率。

  • Metropolis算法的计算过程
      1.初始化:从构型 i = 1 i=1 i=1开始,能量为 E i E_i Ei
      2.进行一次随机试探性移动到构型 i + 1 i+1 i+1,能量为 E i + 1 E_{i+1} Ei+1,并计算能量差 Δ E \Delta E ΔE
         如果 Δ E ≤ 0 \Delta E \le 0 ΔE0,则接受移动,将新构型添加到轨迹中。
         如果 Δ E > 0 \Delta E >0 ΔE>0,则生成介于0和1之间的随机数 r r r。如果 r ≤ e x p ( − Δ E / k T ) r≤exp(-ΔE/kT) rexp(ΔE/kT),则接受移动;否则拒绝。
         在高温下,可接受与当前状态能量差较大的新状态;在低温下,只接受与当前状态能量差较小的新状态。
      3.如果移动被接受,新构型成为状态 i + 1 i+1 i+1
        如果移动被拒绝,构型 i + 1 i+1 i+1保持不变。每次试探都应该向轨迹中添加一个构型,尽管在这种情况下,它与前一个相同。
      4. i = i + 1 i=i+1 i=i+1转到步骤2

  • 蒙特卡洛方法的缺点
      1.Metropolis蒙特卡罗方法是评估系统平均热力学的一种高效方式,然而,它并不提供系统动力学的任何信息。
      2.没有明确的时间概念,“轨迹”不一定是系统自发遵循的轨迹
      然而,蒙特卡罗方法比分子动力学方法更通用,因为它可以应用于更广泛的系统。

5.原子体系的蒙特卡洛算法
1.算法的基本思想
  • 连续模型(如在NVT下)
    基本思想
       1.首先从一个初始构型开始(原子的位置
       2.进行试探性移动(原子的位移
       3.计算能量变化
       4.使用Metropolis算法来接受或拒绝该移动。
2.算法的实现过程
  • 算法的实现:
       1.初始化:从初始随机构型开始,能量 U n = U o l d U_{n}=U_{old} Un=Uold
       2.在所有 N 个原子中随机选取一个原子 i i i,初始位置为 r i , o l d r_{i,old} ri,old
       3.试探性移动:通过随机位移将原子 i i i移动到新位置 r i , n e w r_{i,new} ri,new
       4.计算能量变化 Δ U = U n e w − U o l d \Delta U = U_{new} - U_{old} ΔU=UnewUold
       5.根据Metropolis 准则接受或拒绝移动
       6.如果试探性移动被接受,保留位移的原子作为新系统 n + 1 n+1 n+1
         如果移动被拒绝,新系统n+1保持原来构型
       7.计算统计平均值
       8.返回至步骤 2
  • 我们如何选择合适的位移呢?
    蒙特卡洛的位移
       1.首先,位移的方向必须是随机且无偏的;
       2.其次,必须选择位移的长度,使体系尽可能高效地在模型空间中移动。
       3.最后,由于原子不是在晶格上移动而是连续在空间中运动,所以位移的长度必须是随机的

这篇关于使用Metropolis蒙特卡洛方法的原子模拟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085623

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java