使用Metropolis蒙特卡洛方法的原子模拟

2024-06-22 22:44

本文主要是介绍使用Metropolis蒙特卡洛方法的原子模拟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • 1.蒙特卡罗方法的目标
        • 2.热力学系综
        • 3.连续体系
        • 4.Metropolis算法
          • 1.Metropolis算法介绍
          • 2.Metropolis算法思路
        • 5.原子体系的蒙特卡洛算法
          • 1.算法的基本思想
          • 2.算法的实现过程

1.蒙特卡罗方法的目标
  • 蒙特卡罗方法可以做什么?
    提供材料的热力学信息
    评估整体的平均值(能量、压力等)。
  • 蒙特卡罗方法不能做什么?
    提供材料的动力学信息(例如:扩散常数)
2.热力学系综
  • 强度性质  广延性质
    强度性质(intensive property)是不随物质多少或系统大小而改变的物理性质。
    广延性质(extensive property)是一种物理性质,系统中此性质的量可由组成此系统所有子系统中对应性质的量相加而得。
  • 热力学系综定义了哪些热力学量是受限制的,以及哪些热力学量是自由变化的。
  • 微正则系综
    在微正则系综(NVE)中,系统的所有可能状态都具有相同的能量 E,因此都具有相同的概率。
3.连续体系
  • 对于原子或分子系统,微观状态的数量几乎是无限的,因此将总和替换为一组积分
    ρ ( r N ) = e − U ( r N ) / k B T Z N V T Z N V T = ∫ e − U ( r N ) / k B T d r N \rho(r^{N})=\frac{e^{-U(r^{N})}/k_{B}T}{Z_{NVT}}\quad\quad\quad Z_{NVT}=\int e^{-U(r^{N})/k_{B}T}dr^{N} ρ(rN)=ZNVTeU(rN)/kBTZNVT=eU(rN)/kBTdrN
        例如:势能U的平均值:
    < U > = 1 Z N V T ∫ e − U ( r N ) / k B T U ( r N ) d r N <U>=\frac{1}{Z_{NVT}}\int e^{-U(r^{N})/k_{B}T}U(r^{N})dr^{N} <U>=ZNVT1eU(rN)/kBTU(rN)drN
        为了评估这个物理量,应该先计算所有状态的能量并评估相应的概率。然而,大多数状态具有很高能量,并因此极不可能发生(这是一种浪费时间的做法)。
        为了有效地评估该值,应该只对那些合理的少数状态进行求和,并排除其他状态。
4.Metropolis算法
1.Metropolis算法介绍

< U > = 1 Z N V T ∫ e − U ( r N ) / k B T U ( r N ) d r N <U>=\frac{1}{Z_{NVT}}\int e^{-U(r^{N})/k_{B}T}U(r^{N})dr^{N} <U>=ZNVT1eU(rN)/kBTU(rN)drN

  • 当我们需要求解一个 3N 维的积分时,
    可以使用蒙特卡罗方法,通过在一个空间内进行随机抽样,该空间包含积分定义区域的体积,统计哪些点在该体积内哪些点不在该体积内来实现。
    ρ ( r N ) = e − U ( r N ) / k B T Z N V T \rho(r^{N})=\frac{e^{-U(r^{N})}/k_{B}T}{Z_{NVT}} ρ(rN)=ZNVTeU(rN)/kBT

  • Metropolis算法(1953年)是一种对构型空间进行采样的方法,其采样方式是以麦克斯韦分布给出的概率ρ "访问 "给定状态。
    该方法的思路:在具有合理概率的状态集合中计算,得出该物理量的平均值

  • Metropolis算法可以得到能量分布曲线,并提供具有合理概率的构型列表。得出的构型列表称为轨迹

2.Metropolis算法思路
  • Metropolis算法的方法思路:
      1.从给定的随机构型开始
      2.进行一次试探性移动以获得新的构型
      3.将新构型与之前构型进行比较,根据概率来判断是否将新构型添加到轨迹中。
    ρ β ρ α = e − E β / k β T Q Q e − E α / k β T = e − ( E β − E α ) / k B T \frac{\rho_{\beta}}{\rho_{\alpha}}=\frac{e^{-E_{\beta}/k_{\beta}T}}{Q}\frac{Q}{e^{-E_{\alpha}/k_{\beta}T}}=e^{-(E_{\beta}-E_{\alpha})/k_{B}T} ραρβ=QeEβ/kβTeEα/kβTQ=e(EβEα)/kBT

  • 轨迹上添加新构型的概率:
      1.基于麦克斯韦分布的构型,其试探性移动(从配置i到配置i+1)将根据以下规则被接受:
         当 Δ E i , i + 1 ≤ 0 \Delta E_{i,i+1}\le0 ΔEi,i+10时,由于概率 e − Δ E i , i + 1 / k β T ≥ 1 e^{-\Delta E_{i,i+1}/k_{\beta}T}\ge1 eΔEi,i+1/kβT1而被接受
         当 Δ E i , i + 1 > 0 \Delta E_{i,i+1}>0 ΔEi,i+1>0时,以概率 e − Δ E i , i + 1 / k β T e^{-\Delta E_{i,i+1}/k_{\beta}T} eΔEi,i+1/kβT接受移动
         (可以通过生成介于0和1之间的随机数,并将其与设定的概率进行比较,来决定是否接受给定概率下的新构型。)
      2.通过多次重复此过程,可以生成一系列构型 {i = 1…N},其特征为能量 Ei,这些构型总体上具有合理的概率。

  • Metropolis算法的计算过程
      1.初始化:从构型 i = 1 i=1 i=1开始,能量为 E i E_i Ei
      2.进行一次随机试探性移动到构型 i + 1 i+1 i+1,能量为 E i + 1 E_{i+1} Ei+1,并计算能量差 Δ E \Delta E ΔE
         如果 Δ E ≤ 0 \Delta E \le 0 ΔE0,则接受移动,将新构型添加到轨迹中。
         如果 Δ E > 0 \Delta E >0 ΔE>0,则生成介于0和1之间的随机数 r r r。如果 r ≤ e x p ( − Δ E / k T ) r≤exp(-ΔE/kT) rexp(ΔE/kT),则接受移动;否则拒绝。
         在高温下,可接受与当前状态能量差较大的新状态;在低温下,只接受与当前状态能量差较小的新状态。
      3.如果移动被接受,新构型成为状态 i + 1 i+1 i+1
        如果移动被拒绝,构型 i + 1 i+1 i+1保持不变。每次试探都应该向轨迹中添加一个构型,尽管在这种情况下,它与前一个相同。
      4. i = i + 1 i=i+1 i=i+1转到步骤2

  • 蒙特卡洛方法的缺点
      1.Metropolis蒙特卡罗方法是评估系统平均热力学的一种高效方式,然而,它并不提供系统动力学的任何信息。
      2.没有明确的时间概念,“轨迹”不一定是系统自发遵循的轨迹
      然而,蒙特卡罗方法比分子动力学方法更通用,因为它可以应用于更广泛的系统。

5.原子体系的蒙特卡洛算法
1.算法的基本思想
  • 连续模型(如在NVT下)
    基本思想
       1.首先从一个初始构型开始(原子的位置
       2.进行试探性移动(原子的位移
       3.计算能量变化
       4.使用Metropolis算法来接受或拒绝该移动。
2.算法的实现过程
  • 算法的实现:
       1.初始化:从初始随机构型开始,能量 U n = U o l d U_{n}=U_{old} Un=Uold
       2.在所有 N 个原子中随机选取一个原子 i i i,初始位置为 r i , o l d r_{i,old} ri,old
       3.试探性移动:通过随机位移将原子 i i i移动到新位置 r i , n e w r_{i,new} ri,new
       4.计算能量变化 Δ U = U n e w − U o l d \Delta U = U_{new} - U_{old} ΔU=UnewUold
       5.根据Metropolis 准则接受或拒绝移动
       6.如果试探性移动被接受,保留位移的原子作为新系统 n + 1 n+1 n+1
         如果移动被拒绝,新系统n+1保持原来构型
       7.计算统计平均值
       8.返回至步骤 2
  • 我们如何选择合适的位移呢?
    蒙特卡洛的位移
       1.首先,位移的方向必须是随机且无偏的;
       2.其次,必须选择位移的长度,使体系尽可能高效地在模型空间中移动。
       3.最后,由于原子不是在晶格上移动而是连续在空间中运动,所以位移的长度必须是随机的

这篇关于使用Metropolis蒙特卡洛方法的原子模拟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085623

相关文章

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图