蒙特卡洛方法【强化学习】

2024-04-10 16:04

本文主要是介绍蒙特卡洛方法【强化学习】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习笔记

主要基于b站西湖大学赵世钰老师的【强化学习的数学原理】课程,个人觉得赵老师的课件深入浅出,很适合入门.

第一章 强化学习基本概念
第二章 贝尔曼方程
第三章 贝尔曼最优方程
第四章 值迭代和策略迭代
第五章 强化学习实践—GridWorld
第六章 蒙特卡洛方法


文章目录

  • 强化学习笔记
  • 一、 Motivating example
  • 二、 MC-Basic method
  • 三、MC Exploring Starts
  • 四、MC without exploring starts
  • 五、参考资料


前面介绍的值迭代和策略迭代算法,我们都假设模型已知,也就是环境的动态特性(比如各种概率)我们都预先知道。然而在实际问题中,我们可能对环境的动态特性并不是那么清楚,但是我们可以得到足够多的数据,那么我们同样可以用强化学习来建模解决这个问题,这类不利用模型的算法被称为Model-free的方法。Monte Carlo方法便是一种Model-free的方法。

一、 Motivating example

下面我们通过一个例子对Model-free有一个更加直观的了解,以及Monte Carlo方法是怎么做的,这个例子是概率论中的典型例子——Monty Hall Problem.

Suppose you’re on a game show, and you’re given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what’s behind the other doors, opens another door, say No. 3, which has a goat. He then says to you, ‘Do you want to pick door No. 2?’ Is it to your advantage to take the switch?

由概率论的基本知识我们可以算出每种情况的概率如下:

  1. 不改变选择,选中car的概率为 p = 1 3 p=\frac13 p=31
  2. 改变选择,选中car的概率 p = 2 3 p=\frac23 p=32.

如果我们不能通过理论知识得到这个概率,能不能通过做实验来得到这个结果呢?这就是Monte Carlo要做的事,我们可以通过python编程来模拟这个游戏:

import numpy as np
import matplotlib.pyplot as pltdef game(switch):doors = [0, 0, 1]  # 0代表山羊,1代表汽车np.random.shuffle(doors)# 参赛者初始选择一扇门choice = np.random.randint(3)# 主持人打开一扇有山羊的门reveal = np.random.choice([i for i in range(3) if i != choice and doors[i] == 0])if switch:new_choice = [i for i in range(3) if i != choice and i != reveal][0]return doors[new_choice]  # 返回参赛者的奖励结果,1代表获得汽车,0代表获得山羊else:return doors[choice]# 模拟实验
num_trials = 2000
switch_rewards = []     # 记录每次选择换门后的奖励
no_switch_rewards = []  # 记录每次选择坚持原先选择的奖励
switch_wins = 0     # 记录换门策略的获胜次数
no_switch_wins = 0  # 记录坚持原先选择的获胜次数for i in range(num_trials):# 选择换门switch_result = game(switch=True)switch_rewards.append(switch_result)if switch_result == 1:switch_wins += 1# 选择坚持原先选择的门no_switch_result = game(switch=False)no_switch_rewards.append(no_switch_result)if no_switch_result == 1:no_switch_wins += 1# 计算每次试验的平均奖励
switch_avg_rewards = np.cumsum(switch_rewards) / (np.arange(num_trials) + 1)
no_switch_avg_rewards = np.cumsum(no_switch_rewards) / (np.arange(num_trials) + 1)# 绘制平均奖励曲线
plt.figure(dpi=150)
plt.plot(np.arange(num_trials), switch_avg_rewards, label='换门')
plt.plot(np.arange(num_trials), no_switch_avg_rewards, label='坚持原先选择')
plt.xlabel('试验次数')
plt.ylabel('平均奖励')
plt.title('2000次试验中的平均奖励')
plt.legend()
plt.show()# 输出获胜概率
switch_win_percentage = switch_wins / num_trials
no_switch_win_percentage = no_switch_wins / num_trials
print("选择换门的获胜概率:", switch_win_percentage)
print("选择坚持原先选择的获胜概率:", no_switch_win_percentage)

结果如下:

output

我们可以看到,随着实验次数的增加,概率逐渐收敛到理论值,而这有大数定理进行理论保证.通过这个例子我们可以看到即使我们不知道模型的某些性质(这里是p),但我们可以通过Monte Carlo的方法来得到近似值.

截屏2024-04-09 17.03.00

  • 第一个等式说明样本均值是 E [ X ] \mathbb{E}[X] E[X]的无偏估计;

二、 MC-Basic method

我们回顾一下Policy iteration 的核心算法步骤:
{ Policy evaluation:  v π k = r π k + γ P π k v π k Policy improvement:  π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \left\{\begin{array}{l}\text{Policy evaluation: }v_{\pi_k}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}\\\text{Policy improvement: }\pi_{k+1}=\arg\max_{\pi}(r_{\pi}+\gamma P_{\pi}v_{\pi_k})\end{array}\right. {Policy evaluation: vπk=rπk+γPπkvπkPolicy improvement: πk+1=argmaxπ(rπ+γPπvπk)
其中我们将PI展开如下:
π k + 1 ( s ) = arg ⁡ max ⁡ π ∑ a π ( a ∣ s ) [ ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v π k ( s ′ ) ] = arg ⁡ max ⁡ π ∑ a π ( a ∣ s ) q π k ( s , a ) , s ∈ S \begin{aligned}\pi_{k+1}(s)&=\arg\max_\pi\sum_a\pi(a|s)\left[\sum_rp(r|s,a)r+\gamma\sum_{s'}p(s'|s,a)v_{\pi_k}(s')\right]\\&=\arg\max_\pi\sum_a\pi(a|s)q_{\pi_k}(s,a),\quad s\in\mathcal{S}\end{aligned} πk+1(s)=argπmaxaπ(as)[rp(rs,a)r+γsp(ss,a)vπk(s)]=argπmaxaπ(as)qπk(s,a),sS
从上面的表达式我们可以看到,无论是算 v v v还是 q q q都需要知道模型的概率 p ( s ′ ∣ s , a ) p(s'|s,a) p(ss,a),但在Model-free算法里我们不知道 p p p,所以需要用Monte Carlo的方法进行估计,但是在这里我们不估计 p p p,而是直接估计 q ( s , a ) q(s,a) q(s,a),因为有了 p p p还需要算一下 q q q,所以直接估计 q q q更高效,下面给出伪代码.

截屏2024-04-09 16.40.05

其核心思想就是通过Monte Carlo的方法来估计所有的 q ( s , a ) q(s,a) q(s,a),通过实验得到很多 q ( s , a ) q(s,a) q(s,a)的数据,然后用均值作为其准确值的估计.

截屏2024-04-09 16.47.35

三、MC Exploring Starts

在上面的算法中,给定一个策略 π \pi π,我们可以得到如下的一个episode:

截屏2024-04-09 17.08.30

  • 每一个episode包含多个 ( s , a ) (s,a) (s,a),但在上面的算法中我们只用来计算第一个 ( s , a ) (s,a) (s,a) q q q
  • 显然我们可以充分利用每一个episode的数据

截屏2024-04-09 17.10.37

  • 每个episode的数据只用来计算第一个 q ( s , a ) q(s,a) q(s,a)的值被称为first-visit method;
  • 每个episode的数据用来计算episode中每个 q ( s , a ) q(s,a) q(s,a)的值被称为every-visit method.

截屏2024-04-09 17.17.04

Note:

  1. 要确保所有 ( s , a ) (s,a) (s,a)都被计算到,Exploring Starts意味着我们需要从每个 ( s , a ) (s,a) (s,a)对开始生成足够多的episode.
  2. 在实践中,该算法很难实现的。对于许多应用,特别是那些涉及与环境的物理交互的应用,很难从每个state-action pair.作为起始点得到一段episode.
  3. 因此,理论和实践之间存在差距。我们可以去掉Exploring Starts的假设吗?答案是肯定的,可以通过使用soft policy来实现这一点。

四、MC without exploring starts

Soft Policy

如果一个策略 π \pi π采取任何行动的概率为正,则称为soft policy.

  • 在soft policy下,一些足够长的episodes中可能就会包含每个状态-动作对足够多次;
  • 然后,我们不需要从每个状态-动作对开始采集大量episodes.

下面介绍一种soft policy—— ε \varepsilon ε -greedy策略:
π ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) , for the greedy action,  ε ∣ A ( s ) ∣ , for the other  ∣ A ( s ) ∣ − 1 actions.  \pi(a \mid s)= \begin{cases}1-\frac{\varepsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)|-1), & \text { for the greedy action, } \\ \frac{\varepsilon}{|\mathcal{A}(s)|}, & \text { for the other }|\mathcal{A}(s)|-1 \text { actions. }\end{cases} π(as)={1A(s)ε(A(s)1),A(s)ε, for the greedy action,  for the other A(s)1 actions. 
其中 ε ∈ [ 0 , 1 ] \varepsilon \in[0,1] ε[0,1] ∣ A ( s ) ∣ |\mathcal{A}(s)| A(s) s s s的总数。

  • 选择贪婪行动的机会总是大于其他行动,因为 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) = 1 − ε + ε ∣ A ( s ) ∣ ≥ ε ∣ A ( s ) ∣ 1-\frac{\varepsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)|-1)=1-\varepsilon+\frac{\varepsilon}{|\mathcal{A}(s)|} \geq \frac{\varepsilon}{|\mathcal{A}(s)|} 1A(s)ε(A(s)1)=1ε+A(s)εA(s)ε
  • 为什么使用 ε \varepsilon ε -greedy?Balance between exploitation and exploration
    • ε = 0 \varepsilon=0 ε=0​,它变得贪婪! Less exploration but more exploitation.
    • ε = 1 \varepsilon=1 ε=1时,它成为均匀分布。More exploration but less exploitation.

如何将 ε \varepsilon ε -greedy嵌入到MC-Basic的强化学习算法中?现在,将策略改进步骤改为:
π k + 1 ( s ) = arg ⁡ max ⁡ π ∈ Π ε ∑ a π ( a ∣ s ) q π k ( s , a ) , \pi_{k+1}(s)=\arg \max _{\pi \in \Pi_{\varepsilon}} \sum_a \pi(a \mid s) q_{\pi_k}(s, a), πk+1(s)=argπΠεmaxaπ(as)qπk(s,a),
其中 Π ε \Pi_{\varepsilon} Πε表示所有 ε \varepsilon ε -greedy策略的集合,其固定值为 ε \varepsilon ε。这里的最佳策略是
π k + 1 ( a ∣ s ) = { 1 − ∣ A ( s ) ∣ − 1 ∣ A ( s ) ∣ ε , a = a k ∗ , 1 ∣ A ( s ) ∣ ε , a ≠ a k ∗ . \pi_{k+1}(a \mid s)= \begin{cases}1-\frac{|\mathcal{A}(s)|-1}{|\mathcal{A}(s)|} \varepsilon, & a=a_k^*, \\ \frac{1}{|\mathcal{A}(s)|} \varepsilon, & a \neq a_k^* .\end{cases} πk+1(as)={1A(s)A(s)1ε,A(s)1ε,a=ak,a=ak.

  • MC ε \varepsilon ε -greedy与MC Exploring Starts相同,只是前者使用 ε \varepsilon ε -greedy策略。
  • 它不需要从每个(s,a)出发开始得到episode,但仍然需要以不同的形式访问所有状态-动作对

算法伪代码如下图所示:

截屏2024-04-10 14.28.36

五、参考资料

  1. Zhao, S… Mathematical Foundations of Reinforcement Learning. Springer Nature Press and Tsinghua University Press.
  2. Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

这篇关于蒙特卡洛方法【强化学习】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891517

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验