用于时间序列概率预测的蒙特卡洛模拟

2024-05-26 01:44

本文主要是介绍用于时间序列概率预测的蒙特卡洛模拟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,蒙特卡洛模拟是一种广泛应用于各个领域的计算技术,它通过从概率分布中随机抽取大量样本,并对结果进行统计分析,从而模拟复杂系统的行为。这种技术具有很强的适用性,在金融建模、工程设计、物理模拟、运筹优化以及风险管理等领域都有广泛的应用。

蒙特卡洛模拟这个名称源自于摩纳哥王国的蒙特卡洛城市,这里曾经是世界著名的赌博天堂。在20世纪40年代,著名科学家乌拉姆和冯·诺依曼参与了曼哈顿计划,他们需要解决与核反应堆中子行为相关的复杂数学问题。他们受到了赌场中掷骰子的启发,设想用随机数来模拟中子在反应堆中的扩散过程,并将这种基于随机抽样的计算方法命名为"蒙特卡洛模拟"(Monte Carlo simulation)。

蒙特卡洛模拟的核心思想是通过大量重复随机试验,从而近似求解分析解难以获得的复杂问题。它克服了传统数值计算方法的局限性,能够处理非线性、高维、随机等复杂情况。随着计算机性能的飞速发展,蒙特卡洛模拟的应用范围也在不断扩展。

在金融领域,蒙特卡洛模拟被广泛用于定价衍生品、管理投资组合风险、预测市场波动等。在工程设计中,它可以模拟材料力学性能、流体动力学等复杂物理过程。在物理学研究中,从粒子物理到天体物理,都可以借助蒙特卡洛模拟进行探索。此外,蒙特卡洛模拟还在机器学习、计算生物学、运筹优化等领域发挥着重要作用。

蒙特卡洛模拟的过程基本上是这样的:首先需要定义要模拟的系统或过程,包括方程和参数;其次根据拟合的概率分布生成随机样本;进而针对每一组随机样本,运行模型模拟系统的行为;最后分析结果以了解系统行为。

本文将介绍使用它来模拟未来证券价格的两种分布:高斯分布和学生 t 分布。这两种分布通常被量化分析人员用于证券市场数据。

在此加载苹果公司从2020年到2024年每日证券价格的数据:

import yfinance as yf
orig = yf.download(["AAPL"], start="2020-01-01", end="2024-12-31")
orig = orig[('Adj Close')]
orig.tail()
[*********************100%%**********************]  1 of 1 completed
Date
2024-03-08    170.729996
2024-03-11    172.750000
2024-03-12    173.229996
2024-03-13    171.130005
2024-03-14    173.000000
Name: Adj Close, dtype: float64

可以通过价格序列来计算简单的日收益率,并将其呈现为柱状图。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
returns = orig.pct_change()
last_price = orig[-1]
returns.hist(bins=100)

 苹果证券日收益柱状图

1.标准正态分布拟合收益率

证券的历史波动率通常是通过计算每日收益率的标准差来进行,假设未来的波动率与历史波动率相似。而直方图则呈现了以0.0为中心的正态分布的形状。为简单起见,将该分布假定为均值为0,标准差为0的高斯分布。接下来计算出标准差(也称为日波动率),预计明天的日收益率将会是高斯分布中的一个随机值。

daily_volatility = returns.std()
rtn = np.random.normal(0, daily_volatility)

第二天的价格是今天的价格乘以 (1+return %):

price = last_price * (1  + rtn)

以上是证券价格和收益的基本财务公式。使用蒙特卡洛模拟预测明天的价格,可以随机抽取另一个收益率,从而推算后天的价格,可以得出未来 200 天可能的价格走势之一。当然,这只是一种可能的价格路径。重复这个过程得出另一条价格路径,重复过程 1,000 次,得出 1,000 条价格路径。

import warnings
warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning)num_simulations = 1000
num_days = 200
simulation_df = pd.DataFrame()
for x in range(num_simulations):count = 0    # The first price pointprice_series = []rtn = np.random.normal(0, daily_volatility)price = last_price * (1  + rtn)price_series.append(price)# Create each price pathfor g in range(num_days):rtn = np.random.normal(0, daily_volatility)price = price_series[g] * (1  + rtn)price_series.append(price)# Save all the possible price pathssimulation_df[x] = price_series
fig = plt.figure()
plt.plot(simulation_df)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

分析结果如下:价格起始于179.66美元,大部分价格路径相互交叠,模拟价格范围为100美元至500美元。

图片

使用高斯分布的蒙特卡洛模拟

假设我们想知道90%情况下(5%到95%)出现的"正常"价格范围,可以使用量化方法得到上限和下限,从而评估超出这些极端价格。

upper = simulation_df.quantile(.95, axis=1)
lower = simulation_df.quantile(.05, axis=1)
stock_range = pd.concat([upper, lower], axis=1)fig = plt.figure()
plt.plot(stock_range)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

图片

使用高斯分布的 95 百分位数和 5 百分位数

2.学生t分布拟合收益率

证券价格回报偶尔会出现极端事件,位于分布两端。标准正态分布预计 95% 的收益率发生在两个标准差之内,5% 的收益率发生在两个标准差之外。如果极端事件发生的频率超过 5%,分布看起来就会 "变胖"。这就是统计学家所说的肥尾,定量分析人员通常使用学生 t 分布来模拟证券收益率。

学生 t 分布有三个参数:自由度参数、标度和位置。

  • 自由度:自由度参数表示用于估计群体参数的样本中独立观测值的数量。自由度越大,t 分布的形状越接近标准正态分布。在 t 分布中,自由度范围是大于 0 的任何正实数。

  • 标度:标度参数代表分布的扩散性或变异性,通常是采样群体的标准差。

  • 位置:位置参数表示分布的位置或中心,即采样群体的平均值。当自由度较小时,t 分布的尾部较重,类似于胖尾分布。

用学生 t 分布来拟合实际证券收益率:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import treturns = orig.pct_change()# Number of samples per simulation
num_samples = 100# distribution fitting
returns = returns[1::] # Drop the first element, which is "NA"
params = t.fit(returns[1::]) # fit with a student-t# Generate random numbers from Student's t-distribution
results = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1000)
# Generate random numbers from Student's t-distribution
results = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1000)
print('degree of freedom = ', params[0])
print('loc = ', params[1])
print('scale = ', params[2])

参数如下:

  • 自由度 = 3.735

  • 位置 = 0.001

  • 标度 = 0.014

使用这些参数来预测 Student-t 分布,然后用 Student-t 分布绘制实际证券收益分布图。

returns.hist(bins=100,density=True, alpha=0.6, color='b', label='Actual returns distribution')# Plot histogram of results
plt.hist(results, bins=100, density=True, alpha=0.6, color='g', label='Simulated Student/t distribution')plt.xlabel('Value')
plt.ylabel('Density')
plt.title('Actual returns vs. Projections with a Student\'s t-distribution')
plt.legend(loc='center left')
plt.grid(True)
plt.show()

实际回报与预测相当接近:

图片

实际收益与学生 t 分布预测对比

与之前一样,模拟未来 200 天的价格走势。

import warnings
warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning)num_simulations = 1000
num_days = 200
simulation_student_t = pd.DataFrame()
for x in range(num_simulations):count = 0# The first price pointprice_series = []rtn = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1)[0]price = last_price * (1  + rtn)price_series.append(price)# Create each price pathfor g in range(num_days):rtn = t.rvs(df=params[0], loc=params[1], scale=params[2], size=1)[0]price = price_series[g] * (1  + rtn)price_series.append(price)# Save all the possible price pathssimulation_student_t[x] = price_series
fig = plt.figure()
plt.plot(simulation_student_t)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

图片

学生 t 分布的蒙特卡洛模拟

可以绘制出学生 t 的蒙特卡洛模拟置信区间上下限(95%、5%):

upper = simulation_student_t.quantile(.95, axis=1)
lower = simulation_student_t.quantile(.05, axis=1)
stock_range = pd.concat([upper, lower], axis=1)fig = plt.figure()
plt.plot(stock_range)
plt.xlabel('Number of days')
plt.ylabel('Possible prices')
plt.title('The upper 95% and lower 5%')
plt.axhline(y = last_price, color = 'b', linestyle = '-')
plt.show()

图片

使用学生 t 分布的 95 百分位数和 5 百分位数

这篇关于用于时间序列概率预测的蒙特卡洛模拟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003214

相关文章

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

CSS模拟 html 的 title 属性(鼠标悬浮显示提示文字效果)

《CSS模拟html的title属性(鼠标悬浮显示提示文字效果)》:本文主要介绍了如何使用CSS模拟HTML的title属性,通过鼠标悬浮显示提示文字效果,通过设置`.tipBox`和`.tipBox.tipContent`的样式,实现了提示内容的隐藏和显示,详细内容请阅读本文,希望能对你有所帮助... 效

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依