单细胞专题

单细胞降维聚类分群注释全流程学习(seruat5/harmony)

先前置几个推文~ 单细胞天地: https://mp.weixin.qq.com/s/drmfwJgbFsFCtoaMsMGaUA https://mp.weixin.qq.com/s/3uWO8AP-16ynpRQEnEezSw 生信技能树: https://mp.weixin.qq.com/s/Cp7EIXa72nxF3FHXvtweeg https://mp.weixin.qq.

杨树84K品种的单细胞测序发现转录因子PagMYB31的功能-文献精读44

Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar 转录因子PagMYB31正向调控杨树84K品种的形成层活动,并负向调控木质部的发育。 同样有篇文献,二倍体毛白杨基因组~ 二倍体毛白杨(Populus

科研绘图系列:R语言单细胞差异基因四分图(Quad plot)

介绍 在单细胞分析领域,为了探究不同分组间同一细胞类型的基因表达差异,研究者们常采用四分图(Quad Plot)作为分析工具。该图形的横轴代表比较组1,而纵轴代表比较组2。通过这种布局,四分图能够有效地展示两组间共有的差异表达基因,从而为深入理解细胞类型在不同条件下的分子特性提供直观的视角。这种可视化方法不仅揭示了组间基因表达的异同,还有助于识别可能在生物学过程或疾病发生中起关键作用的基因。

探索结直肠癌的免疫逃逸机制:单细胞分析揭示患者分层

探索结直肠癌的免疫逃逸机制:单细胞分析揭示患者分层 在最新的科学研究中,结直肠癌(CRC)的复杂性和异质性一直是研究者们关注的重点。近期,一篇题为《Integrative single-cell analysis of human colorectal cancer reveals patient stratification with distinct immune evasion me

文献阅读:单细胞分辨率下小鼠大脑衰老的分子和空间特征

文献介绍 文献题目: Molecular and spatial signatures of mouse brain aging at single-cell resolution 研究团队: 庄小威(美国哈佛大学)、Catherine Dulac(美国哈佛大学) 发表时间: 2022-12-28 发表期刊: Cell 影响因子: 66.8(2022年) DOI: 10.1016

Signac 单细胞|ATAC-seq Call peak

引言 本文将向您展示如何利用MACS2软件,在单细胞ATAC-seq的基因组数据中识别基因调控区域的峰值。 实战 在使用Signac进行峰值检测之前,您需要先安装MACS2。您可以通过pip或conda安装它,或者从源代码自行编译。 本次演示以人类外周血单核细胞的单细胞ATAC-seq数据为例。首先,请加载必要的软件包和预先处理过的Seurat数据对象。 library(Signac)libra

「热图」ComplexHeatmap展示单细胞聚类

实用Seurat自带的热图函数DoHeatmap绘制的热图,感觉有点不上档次,于是我尝试使用ComplexHeatmap这个R包来对结果进行展示。 个人觉得好的热图有三个要素 聚类: 能够让别人一眼就看到模式 注释: 附加注释能提供更多信息 配色: 要符合直觉,比如说大部分都会认为红色是高表达,蓝色是低表达 在正式开始之前,我们需要先获取一下pbmc的数据,Seurat提供了R包Seura

使用SCALE分析单细胞ATAC-seq数据

SCALE全称是Single-Cell ATAC-seq analysis vie Latent feature Extraction, 从名字中就能知道这个软件是通过隐特征提取的方式分析单细胞ATAC-seq数据。 在文章中,作者从开发者的角度列出了目前的scATAC-seq分析软件,chromVAR, scABC, cisTopic, scVI,发现每个软件都有一定的不足之处,而从我们软件使

「单细胞转录组系列」如何从稀疏矩阵中提取部分数据进行分析

这一篇文章是回答知识星球中一位星友的提问,她的电脑内存有限,无法直接使用所有数据,只能分析部分数据。 数据来源: https://content.cruk.cam.ac.uk/jmlab/atlas_data.tar.gz 解压缩之后,得到下面数据 数据清单 其中raw_counts.mtx是以稀疏矩阵格式存放的表达量数据,文件为6.5G, 用普通的文本编辑器无法打开,

「单细胞转录组系列」如何可靠地确定公共数据集的性别

太长不看版: 文献报道XIST和RPS4Y1是区分性别的两个高可信度的标记基因,因此你没有必要去用其他性染色体上的基因去确定数据集的性别。 不仅仅是在使用公共的单细胞转录组数据,其实早在公共芯片数据或者RNA-seq数据挖掘中,就有人在考虑一个问题,这个数据的元信息作者会不会搞错了呢? 以性别为例,我们很容易想到表达Y染色体上基因数据肯定是男性,但是我们也知道基因也不是任何时刻都表达,所以如

单细胞|RNA-seq ATAC-seq 联合分析

引言 本文[1]将介绍如何利用Signac和Seurat这两个工具,对一个同时记录了DNA可接触性和基因表达的单细胞数据集进行综合分析。我们将以一个公开的10x Genomics Multiome数据集为例,该数据集针对的是人体的外周血单核细胞。 数据准备 library(Signac)library(Seurat)library(EnsDb.Hsapiens.v86)library(BSgen

使用ShinyCell展示你的单细胞数据

在我参与发表我的第一篇植物单细胞文章中,我用Shiny开发了一个简单的单细胞可视化网站,目前已经运行了5年了,有上万的访问,唯一的不足就是太简陋。我一直想着能不能找个一个更好的工具进行展示,最近发现了一个工具,ShinyCell,https://github.com/SGDDNB/ShinyCell。 他的安装非常简单,就是安装如下的R包 reqPkg = c("data.table", "M

⑤单细胞学习-cellchat组间通讯差异分析

④-1单细胞学习-cellchat单数据代码补充版-CSDN博客 ④-2单细胞学习-cellchat单数据代码补充版(通讯网络)-CSDN博客 参考: 1:单细胞分析之细胞交互-3:CellChat - 简书 (jianshu.com) 2:CellChat细胞通讯分析(下)--实操代码·多个数据集比较分析 - 知乎 (zhihu.com)

Signac|成年小鼠大脑 单细胞ATAC分析(2)

引言 在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。 本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。 创建基因活动矩阵

Signac|成年小鼠大脑 单细胞ATAC分析(1)

引言 在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。 本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。 实战 首先,我们

④单细胞学习-cellchat细胞间通讯

目录 1,原理基础 流程 受体配体概念 方法比较 计算原理 2,数据 3,代码运行 1,原理基础 原文学习Inference and analysis of cell-cell communication using CellChat - PMC (nih.gov) GitHub - sqjin/CellChat: R toolkit for inference, visual

Seurat | 不同单细胞转录组的整合方法

一、涉及的新概念 参考(reference):将跨个体,跨技术,跨模式产生的不同的单细胞数据整合后的数据集 。也就是将不同来源的数据集组合到同一空间(reference)中。 从广义上讲,在概念上类似于基因组DNA序列的参考装配。 查询(query):单个实验产生的数据集 转化学习(transfer learning):产生一个于参考数据集(reference)上进行训练的模型,可以将信

二区5分纯生信|单细胞+非负矩阵+AlphaFold+机器学习组合

说在前面 学文不看刊 这篇分析总体来说工作量不算大,scRNA联合bulkRNA分析,多种机器学习组合预测模型,最后用了AlphaFold2预测蛋白及AutoDock分子对接 非常适合小白学习和模仿,其次在筛选出核心基因后可以再加几个外部数据集观察表达表征,单细胞层次也可再次进行验证,堆上工作量 今天给大家分享的一篇文章:Unveiling the molecular complex

继“三级淋巴结”之后,再看看“单细胞”如何与AI结合【医学AI|顶刊速递|05-25】

小罗碎碎念 24-05-25·文献速递 今天想和大家分享的是肿瘤治疗领域的另一个热点——单细胞技术,我们一起来看看,最新出炉的顶刊,是如何把AI与单细胞结合起来的。 另外,今天是周末,所以会有两篇文章——一篇文献速递,一篇文献精析(介绍哈佛医学院的那篇3D病理),感兴趣的同学可以看完这篇以后移步下一篇。 想看临床故事的,看第一、二、三、六篇文章,如果想找算法的,可以着重看看第四和

单细胞分析(Signac): PBMC scATAC-seq 整合

引言 在本教学指南中,我们将探讨由10x Genomics公司提供的人类外周血单核细胞(PBMCs)的单细胞ATAC-seq数据集。 加载包 首先加载 Signac、Seurat 和我们将用于分析人类数据的其他一些包。 if (!requireNamespace("EnsDb.Hsapiens.v75", quietly = TRUE))    BiocManager::install("Ens

1.基于python的单细胞数据预处理-降维可视化

目录 降维的背景PCAt-sneUMAP检查质量控制中的指标 参考: [1] https://github.com/Starlitnightly/single_cell_tutorial [2] https://github.com/theislab/single-cell-best-practices 降维的背景 虽然特征选择已经减少了维数,但为了可视化,我们需要更直观的降维

1.基于python的单细胞数据预处理-特征选择

文章目录 特征选择背景基于基因离散度基于基因归一化方差基于基因皮尔森近似残差特征选择总结 参考: [1] https://github.com/Starlitnightly/single_cell_tutorial [2] https://github.com/theislab/single-cell-best-practices 特征选择背景 现在已经获得了经过归一化的测序数

单细胞分析:多模态 reference mapping (2)

引言 本文[1]介绍了如何在Seurat软件中将查询数据集与经过注释的参考数据集进行匹配。我们展示了如何将来自不同个体的人类骨髓细胞(Human BMNC)的人类细胞图谱(Human Cell Atlas)数据集,有序地映射到一个统一的参考框架上。 我们之前利用参考映射的方法来标注查询数据集中的细胞标签。在Seurat v4版本中,大幅提高了执行集成任务,包括参考映射的速度和内存效率,并且还新增

1.基于python的单细胞数据预处理-归一化

目录 归一化的引入移位对数皮尔森近似残差两个归一化方法的总结 参考: [1] https://github.com/Starlitnightly/single_cell_tutorial [2] https://github.com/theislab/single-cell-best-practices 归一化的引入 在质量控制中,已经从数据集删除了低质量细胞。然而由于测序技术

Cell长文:肿瘤研究中空间单细胞蛋白组技术如何提升10x 空转数据层次

胶质瘤是高度异质性和浸润性的肿瘤,包含了不同细胞状态的恶性细胞。组织病理学发现了某些空间区域与局部组成结构相关,例如与缺氧相关的坏死灶。现在,技术的发展使我们能够重新审视经典组织病理学所捕获的空间结构,并通过对细胞类型和细胞状态的分析来进行定量描述。 前期的研究通过解离组织进行scRNA-seq已经定义了不同类型的胶质母细胞瘤(GBM)恶性细胞及不同的免疫细胞亚型,例如4种恶性细胞类型:neur

CCRCC+101 种机器学习算法组合+免疫原性死亡+单细胞

免疫原性细胞死亡相关的多组学鉴定-在3P医学背景下,基于101 -组合机器学习计算框架的透明细胞肾细胞癌的特征 一、研究背景 1、透明细胞肾细胞癌(ccRCC)是一种常见的泌尿系统恶性肿瘤,死亡率极高。缺乏可靠的预后生物标志物破坏了其预测、预防和个性化的有效性 2、免疫原性细胞死亡(ICD)是一种特殊类型的程序性细胞死亡,与抗癌免疫有关。然而,ICD在ccRCC中的作用尚不清楚。