使用SCALE分析单细胞ATAC-seq数据

2024-06-23 20:18

本文主要是介绍使用SCALE分析单细胞ATAC-seq数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCALE全称是Single-Cell ATAC-seq analysis vie Latent feature Extraction, 从名字中就能知道这个软件是通过隐特征提取的方式分析单细胞ATAC-seq数据。

在文章中,作者从开发者的角度列出了目前的scATAC-seq分析软件,chromVAR, scABC, cisTopic, scVI,发现每个软件都有一定的不足之处,而从我们软件使用者的角度,其实可以考虑都试试这些工具。

SCALE结合了深度生成模型(Depp Generative Models)变分自动编码器框架(Variational Autoencoder, VAE)与概率高斯混合模型(Gaussian Mixture Model, GMM)去学习隐特征,用于准确地鉴定scATAC-seq数据中的特征。

文章通过一张图来解释了软件的工作机制:

SCALE框架

SCALE将sc-ATAC-seq的输入数据x(Cells-by-Peaks矩阵)建模成一个联合分布,p(x,z,c),c是GMM组件中对应的预定义的K个聚类,z是一个隐变量,是细胞在所有peak中实际可能的值,用于后续的聚类和可视化。z通过$z = muz sigmaZ times epsilon$ 计算而得,公式里面的 $muz$ $sigmaz$ 是编码器网络从x中学习而得,$epsilon$ 则是从 $mathbb{N}(0,mathbf{I})$ 抽样而成。

从公式中我们还可以发现z其实和GMM的c有关,所以p(x,z,c)也可以写成P(x|z)p(z|c)p(c),而p(c)是K个预定义聚类分布的离散概率分布,p(z|c)服从混合高斯分布,而p(x|z)则是服从多变量伯努利分布(multivartiable Bernoulli distribution), 通过解码者网络建模而成。

当然从一个软件使用者的角度而言,我们不会去关心代码,也不会关心原理,我们更关心的是这个工具能做什么。SCALE能做以下的分析

  • SCALE可以对隐特征聚类识别细胞类群
  • SCALE可以降噪,恢复缺失的peak
  • SCALE能够区分批次效应和生物学细胞类群之间的差异

软件安装

推荐使用conda的方式进行软件安装(我测试过了,运行没有问题)

第一步:创建一个环境,名字就是SCALE,并且启动该环境

conda create -n SCALE python=3.6 pytorch
conda activate SCALE

第二步:从GitHub上克隆该项目

git clone git://github.com/jsxlei/SCALE.git

第三步:安装SCALE

cd SCALE
python setup.py install

之后分析的时候,只需要通过conda activate SCALE就能启动分析环境。

考虑后续要交互的读取数据和可视化,那么建议再安装一个Jupyter

conda install jupyter

软件使用

SCALE支持两类输入文件:

  • count矩阵,行为peak,列为barcode
  • 10X输出文件: count.mtx.gz, peak.tsv, barcode.tsv

我们以官方提供的Forebrain数据集为例进行介绍,因为这个数据相对于另外一个数据集Mouse Atlas小多了。

我们在服务器上新建一个文件夹,用于存放从 下载的数据

mkdir Forebrain

保证Forebrain有下载好的数据

$ ls Forebrain 
data.txt

之后运行程序

SCALE.py -d Forebrain/data.txt -k 8 --impute

软件运行步骤为:

  • 加载数据: Loading data
  • 模型训练: Training Model
  • 输出结果: Saving imputed data

其中模型训练这一步时间比较久,可以尝试用GPU加速(我是普通CPU服务器没有办法)。最终会在当前文件夹看到一个output文件夹,里面有如下内容:

  • imputed_data.txt: 每个细胞在每个特征的推断值,建议用`--binary`保存二进制格式
  • model.pt: 用于重复结果的模型文件,--pretrain参数能够读取该模型
  • feature.txt: 每个细胞的隐特征,用于聚类和可视化
  • cluster_assignments.txt: 两列,barcode和所属类群
  • tsne.txt, tsne.pdf: tSNE的坐标和PDF文件,坐标文件可以导入到R语言进行可视化

上面是命令行部分,下面则是Python环境进行交互式操作,输入jupyter notebook,之后在网页上打开

首先是导入各种Python库

import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from matplotlib import pyplot as plt
import seaborn as sns
from scale.plot import plot_embedding, plot_heatmap

然后加载分析结果,包括聚类信息和特征信息

y = pd.read_csv('output/cluster_assignments.txt', sep='\t', index_col=0, header=None)[1].values
feature = pd.read_csv('output/feature.txt', sep='\t', index_col=0, header=None)

通过热图展示不同聚类细胞之间的差异图

plot_heatmap(feature.T, y, figsize=(8, 3), cmap='RdBu_r', vmax=8, vmin=-8, center=0,ylabel='Feature dimension', yticklabels=np.arange(10) 1, cax_title='Feature value', legend_font=6, ncol=1,bbox_to_anchor=(1.1, 1.1), position=(0.92, 0.15, .08, .04))

heatmap

如果要矫正批次效应,可以通过根据feature的heatmap,去掉和batch相关的feature来实现

我们可以展示SCALE对原始数据纠正后的值(imputed data), 该结果也能提高chromVAR鉴定motif的效果

imputed = pd.read_csv('output/imputed_data.txt', sep='\t', index_col=0)

展示聚类特异性的peak, 分析由mat_specificity_scorecluster_specific完成

from scale.specifity import cluster_specific, mat_specificity_scorescore_mat = mat_specificity_score(imputed, y)
peak_index, peak_labels = cluster_specific(score_mat, np.unique(y), top=200)plot_heatmap(imputed.iloc[peak_index], y=y, row_labels=peak_labels, ncol=3, cmap='Reds', vmax=1, row_cluster=False, legend_font=6, cax_title='Peak Value',figsize=(8, 10), bbox_to_anchor=(0.4, 1.2), position=(0.8, 0.76, 0.1, 0.015))

聚类特异性peak

参数介绍

通过SCALE.py -h可以输出SCALE的所有可用参数

  • -d/--dataset: 单个文件矩阵应该指定文件路径,10X输出的多个文件则是文件目录
  • -k: 设定输出结果的聚类数
  • -o: 输出文件路径
  • --pretrain: 读取之前训练的模型
  • --lr: 修改起始学习速率, 默认是0.002,和模型训练有关
  • --batch_size: 批处理大小, 默认就行,不需要修改(和批次效应处理无关)
  • -g GPU: 选择GPU设备数目,非GPU服务器用不到
  • --seed: 初始随机数种子,通常在遇到nan缺失时考虑修改
  • -encode_dim, -decode_dim: 编码器和解码器的维度,通常也不需要修改
  • -latent 隐藏层维度
  • --low, --high: 过滤低质量的peak, 即出现比例高于或者低于某个阈值的peak,默认是0.01和0.9。作者推荐保留1万-3万的peak用于SCALE分析。如果数据质量很高,且peak数不多于10万,那么可以不过滤。
  • --min_peaks: 过滤低质量细胞,如果该细胞的peak低于阈值
  • log_transform: log2(x 1)的变换
  • --max_iter: 最大迭代数,默认是30000, 可以观察损失收敛的情况来修改,也就是训练模型这一步输出的信息
  • -weight_decay: 没有说明
  • --impute: 保存推断数据,默认开启
  • --binary: 推荐加上该参数,减少imputed data占用空间
  • --no_tsne: 不需要保存t-SNE结果
  • --reference: 参考细胞类型
  • -t: 如果输出矩阵是列为peak,行为barcode,用该参数进行转置

对于使用者而言,我们一般只用修改-k更改最后的聚类数,--low, --high, ---min_peaks来对原始数据进行过滤,以及加上--binary节约空间。

版权声明:本博客所有文章除特别声明外,均采用 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0) 进行许可。

扫码即刻交流

这篇关于使用SCALE分析单细胞ATAC-seq数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088169

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2