1.基于python的单细胞数据预处理-降维可视化

2024-05-11 18:36

本文主要是介绍1.基于python的单细胞数据预处理-降维可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 降维的背景
  • PCA
  • t-sne
  • UMAP
  • 检查质量控制中的指标

参考:
[1] https://github.com/Starlitnightly/single_cell_tutorial
[2] https://github.com/theislab/single-cell-best-practices

降维的背景

虽然特征选择已经减少了维数,但为了可视化,我们需要更直观的降维方法。降维将高维数据嵌入到低维空间中。低维表示仍然捕获数据的基本结构,同时尽可能少地持有维度。比如下图,我们将三维对象可视化为投影到二维空间中。

fig1

过去的研究独立比较了10种不同的降维方法的稳定性,准确性和计算成本。他们建议使用t-分布随机邻居嵌入(t-SNE),因为它产生了最佳的性能。统一流形逼近和投影(UMAP)显示出最高的稳定性,并且最好地分离了原始细胞群体。在这种情况下,值得一提的另一种降维方法是主成分分析(PCA),它仍然被广泛使用。

首先我们加载来自特征选择处理的数据:

import omicverse as ov
import scanpy as scov.ov_plot_set()adata = sc.read("./data/s4d8_preprocess.h5ad")
print(adata)
print(adata.X.max()) # 10.989398

在标准流程中,按照特征选择出的特征切片得到新矩阵后,我们还需要对新矩阵的计数进行scale(为了利于降维)。在omicverse中,我们将scale后的值存放进adata.layer,而不是像scanpy一样默认取代adata.X。但是注意,没有任何的证据表明,数据经过scale后会取得更好的差异基因分析结果,若盲目地使用scale后的计数值,还可能会导致使用dotplot或者violinplot中忽略了基因自身的特征信息,差异基因分析最好是使用缩放前的X

比如我们关注的一个基因A的表达值在17-20区间,而基因B的表达值在0-3的区间,经过scale后,由于平均值被缩放成了0,基因A和基因B都在-2-2的区间范围内,这一定程度上失去了基因A表达量高的信息。故scale对差异基因分析似乎是不利的。

scale如下:

# 缩放
ov.pp.scale(adata,max_value=10)
print(adata)"""
AnnData object with n_obs × n_vars = 14814 × 2000obs: 'n_genes_by_counts', 'log1p_n_genes_by_counts', 'total_counts', 'log1p_total_counts', 'pct_counts_in_top_20_genes', 'total_counts_mt', 'log1p_total_counts_mt', 'pct_counts_mt', 'total_counts_ribo', 'log1p_total_counts_ribo', 'pct_counts_ribo', 'total_counts_hb', 'log1p_total_counts_hb', 'pct_counts_hb', 'outlier', 'mt_outlier', 'scDblFinder_score', 'scDblFinder_class'var: 'gene_ids', 'feature_types', 'genome', 'mt', 'ribo', 'hb', 'n_cells_by_counts', 'mean_counts', 'log1p_mean_counts', 'pct_dropout_by_counts', 'total_counts', 'log1p_total_counts', 'n_cells', 'percent_cells', 'robust', 'mean', 'var', 'residual_variances', 'highly_variable_rank', 'highly_variable_features'uns: 'hvg', 'layers_counts', 'log1p'layers: 'counts', 'soupX_counts', 'scaled'
"""

可以发现adata的layers层多出了一个scaled,这就是我们经过scale后的数据。

PCA

基于scaled的数据进行PCA:

ov.pp.pca(adata,layer='scaled',n_pcs=50)
print(adata)

可以发现,adata.obsm层里多出了一个scaled|original|X_pca,这代表了我们使用的是layers中的scaled层数据进行的pca计算,当然我们也可以使用counts进行pca计算,效果如下:

ov.pp.pca(adata,layer='counts',n_pcs=50)
print(adata)

使用embedding函数,来对比基于两种不同的layers计算所得出的pca的差异:

import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='scaled|original|X_pca',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='counts|original|X_pca',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_pca.png')

fig2

我们会发现基于scaled的pca结果,第一主成分和第二主成分有着相似的数量级,而基于counts的pca结果,第一主成分和第二主成分的数量级则有所差异,这对于后续的2维投影(比如t-sne和umap)可能会有显著的影响。

t-sne

t-SNE 是一种基于图的、非线性的降维技术,它将高维数据投影到 2D 或 3D 分量上。该方法基于数据点之间的高维欧几里得距离定义了一个高斯概率分布。随后,使用 t 分布在低维空间中重建概率分布,其中嵌入通过梯度下降进行优化。

分别对scaled的pca和counts的pca进行tsne:

sc.tl.tsne(adata, use_rep="scaled|original|X_pca")
# tsne函数默认是存放在adata.obsm['X_tsne']中的,我们将其存放在adata.obsm['X_tsne_scaled']中来区分counts的结果
adata.obsm['X_tsne_scaled']=adata.obsm['X_tsne']
sc.tl.tsne(adata, use_rep="counts|original|X_pca")
adata.obsm['X_tsne_counts']=adata.obsm['X_tsne']# 可视化
import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='X_tsne_scaled',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='X_tsne_counts',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_tsne.png')

fig3

UMAP

UMAP 是一种基于图的、非线性的降维技术,原理上与 t-SNE 类似。它构建了数据集的高维图表示,并优化低维图表示,使其在结构上尽可能地与原始图相似。

我们首先基于PCA的结果,在单细胞数据上构建一个邻域图再运行umap:

sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,use_rep='scaled|original|X_pca')
sc.tl.umap(adata)
# umap函数默认是存放在adata.obsm['X_umap']中的,我们将其存放在adata.obsm['X_umap_scaled']中来区分counts的结果
adata.obsm['X_umap_scaled']=adata.obsm['X_umap']sc.pp.neighbors(adata, n_neighbors=15, n_pcs=50,use_rep='counts|original|X_pca')
sc.tl.umap(adata)
adata.obsm['X_umap_counts']=adata.obsm['X_umap']# 可视化
import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,2,figsize=(8,4))
ov.utils.embedding(adata,basis='X_umap_scaled',frameon='small',color='MS4A1',show=False,ax=axes[0])
ov.utils.embedding(adata,basis='X_umap_counts',frameon='small',color='MS4A1',show=False,ax=axes[1])
plt.savefig('./result/2-6_umap.png')

fig4

检查质量控制中的指标

现在我们可以在scaled数据的UMAP中检查之前的质量控制指标,一般检查三个指标:total_counts,n_genes_by_counts,pct_counts_mt。

如果前面使用的是omicverse.pp.qc,那么我们将直接得到nUMIs,detected_genes,mito_perc三个变量,如果使用的是scanpy进行的质控,那么得到的将是total_counts,n_genes_by_counts 和 pct_counts_mt 三个变量。

我们使用numpy中的log2对数化,将数据可视化区间缩小,同时,我们定义最大最小值来衡量我们的数据质量,我们希望total_counts大于250,250的对数值是7.96,所以我们最小值设定为8,最大值则定义为30,000,即15,而线粒体的比例则在0-100的范围内。

import numpy as np
adata.obs['log2_nUMIs']=np.log2(adata.obs['total_counts'])
adata.obs['log2_nGenes']=np.log2(adata.obs['n_genes_by_counts'])
ov.utils.embedding(adata,basis='X_umap_scaled',color=['log2_nUMIs','log2_nGenes','pct_counts_mt'],title=['log2#(nUMIs)','log2#(nGenes)','Mito_Perc'],vmin=[0,0,0],vmax=[15,15,100],show=False,frameon='small',)
plt.savefig('./result/2-6_qc.png')

理想情况如下图,total_counts(全部高亮),n_genes_by_counts(全部高亮),pct_counts_mt(全部不高亮)。
fig5

然后保存数据用于后续分析:

adata.write_h5ad('./data/s4d8_dimensionality_reduction.h5ad', compression='gzip')

这篇关于1.基于python的单细胞数据预处理-降维可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980327

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss