目录 1.线性判别分析 (LDA) 降维算法的Python实现2.LDA算法的基本思想2.1类间方差矩阵 S B S_B SB2.2类内方差矩阵 S W S_W SW2.3优化目标 3.LDA的Python实现4.代码解析5.实际应用场景:手写数字识别5.1数据准备5.2使用LDA降维5.3分类效果 6.总结 1.线性判别分析 (LDA) 降维算法的Python实现
主要是对西瓜书里面的一个思路的实现,并不涉及PCA原理和公式推导,用一句话总结PCA,在 R d R^{d} Rd中的m个点经过矩阵变换(压缩)映射到 R d ′ R^{d'} Rd′空间中,并且保证 d ′ < d d'<d d′<d,其中 d ′ d' d′是新维度。 用矩阵表示: Z d ′ ∗ m = W d ′ ∗ d T ∗ X d ∗ m Z_{d'*m}=W^{T}_{d'*d}
主成分分析最大方差理论 主成分分析(PCA)目标是找到数据中的主成分,并利用这些主成分表征原始数据,因而做到降维。 在信号领域,认为信号具有较大的方差,噪声具有较小的方差,信号与噪声之比称为信噪比,信噪比越大意味着数据质量也就越好。进而可以采用最大化投影方差的方法实现PCA的目标。 给定一组数据点 { v 1 , v 2 , ⋯   , v n } \{v_1,v_2,\cd