【机器学习】特征提取 特征降维

2024-08-21 17:44

本文主要是介绍【机器学习】特征提取 特征降维,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特征工程

特征工程是将原始数据转化为可以用于机器学习的数字特征,比如字典的特征提取,文档的特征提取等。

字典特征提取

把字典的每个唯一的键作为数据集特征的一个维度,有这个维度的就为1,没有就是0。其他相同的键,该维度的值就是其键值。

这样的操作把字典样本的每一条数据转化为了矩阵,但是矩阵中含有大量的0(因为数据中的键和值有很多不同),所以称之为稀疏矩阵

为了保存数据的高效,一般使用三元组表存储。保存非零数据的索引和值。

DictVectorizer 接收参数是字典列表

返回值默认是三元组的稀疏矩阵表示

sparse=False表示返回的是数组

sparse=True表示返回的是三元组 (默认值)

三元组可以通过toarray()转化为稀疏矩阵

from sklearn.feature_extraction import DictVectorizer
dit = [{'name':'Tom','h':180,'age':40,'p':'a'},{'name':'Jerry','h':30,'age':30,'p':'b'},{'name':'Speicher','h':220,'age':50,'p':'c'}
]transf = DictVectorizer(sparse=True) # sparse稀疏 坐标(索引) 值的形式提取,更节省内存   默认是稀疏矩阵  可以设置为数组  
arr = transf.fit_transform(dit)
print(arr)
print(arr.toarray()) # 转换为矩阵
'''(0, 0)	40.0(0, 1)	180.0(0, 4)	1.0(0, 5)	1.0(1, 0)	30.0(1, 1)	30.0(1, 2)	1.0(1, 6)	1.0(2, 0)	50.0(2, 1)	220.0(2, 3)	1.0(2, 7)	1.0
[[ 40. 180.   0.   0.   1.   1.   0.   0.][ 30.  30.   1.   0.   0.   0.   1.   0.][ 50. 220.   0.   1.   0.   0.   0.   1.]]
'''

文本特征提取

把文本中的词作为一个文本的特征,词在文本中的数量就是对应特征的值

CountVectorizer

stop_words 表示词的黑名单,不提取这些词 是一个列表

print(transf.get_feature_names_out()) 获得特征名,也就是词

  • 英文文本特征提取
from sklearn.feature_extraction.text import CountVectorizer
text_ls_E = ['cat and rat','cat is Tom','rat is Jerry']
transf = CountVectorizer(stop_words=['is','and'])  # 词黑名单  不提取的词  需要对句子进行分词
arr = transf.fit_transform(text_ls_E)
print(arr)
print(arr.toarray())
print(transf.get_feature_names_out())  # 
'''(0, 0)	1(0, 2)	1(1, 0)	1(1, 3)	1(2, 2)	1(2, 1)	1
[[1 0 1 0][1 0 0 1][0 1 1 0]]
['cat' 'jerry' 'rat' 'tom']
'''
  • 中文文本特征提取

和英文不同之处在于,需要进行分词,因为中文并不是一个字就代表一个含义

import jieba
text_ls_c = ['猫和老鼠','猫是汤姆','老鼠是杰瑞']  # 中文需要进行分词
transf_C = sklearn.feature_extraction.text.CountVectorizer(stop_words=['是'])text_cut = []
for seq in text_ls_c:seq = jieba.lcut(seq)seq = ' '.join(seq)text_cut.append(seq)
# print(text_cut)
data = transf_C.fit_transform(text_cut)
print('中文',data)
print(data.toarray())
print(transf_C.get_feature_names_out())'''
中文   (0, 2)	1(1, 1)	1(2, 3)	1(2, 0)	1
[[0 0 1 0][0 1 0 0][1 0 0 1]]
['杰瑞' '汤姆' '猫和老鼠' '老鼠']
'''

TF-IDF 文本特征词重要程度特征提取

TF 词频 文本中词出现次数/文本中词的数量 词在文档中的重要程度

IDF 逆文档频率 ln(文档的数量/文档中出该词的文档数) 词在整个文档集合中的重要程度

TF-IDF 词频和逆文档频率的积

# TF-IDF  文本特征词重要程度特征提取
from sklearn.feature_extraction.text import TfidfVectorizer,CountVectorizer
texts = ['this is a cat','this is a dog','this is a rat',
]
data=['世界 你好 我 是 华清 远见 的 张 三', '你好 世界 我 是 李四 世界', '华清 远见 666']# counter = CountVectorizer(stop_words=['is'])
# data_counter = counter.fit_transform(texts)
tfidfer = TfidfVectorizer()
data_tfidf = tfidfer.fit_transform(texts)
print(data_tfidf)
print(data_tfidf.toarray())
print(tfidfer.get_feature_names_out())
'''(0, 0)	0.7674945674619879(0, 2)	0.4532946552278861(0, 4)	0.4532946552278861(1, 1)	0.7674945674619879(1, 2)	0.4532946552278861(1, 4)	0.4532946552278861(2, 3)	0.7674945674619879(2, 2)	0.4532946552278861(2, 4)	0.4532946552278861
[[0.76749457 0.         0.45329466 0.         0.45329466][0.         0.76749457 0.45329466 0.         0.45329466][0.         0.         0.45329466 0.76749457 0.45329466]]
['cat' 'dog' 'is' 'rat' 'this']
'''

无量纲化

去掉数据的单位,把数据的只用数值来表示,转化为没有单位的量。

无量纲化之后可以使得不同的物理量,可以在一个范围内进行比较或者运算

现实中的数据单位不同,导致不同类型的数据之间的差异,影响对样本特征的处理

  • 归一化MinMaxScaler

把原始数据变换到指定的范围,默认0-1 (比例尺的缩放)

x = (x-x_min)/(x_max-x_min) 得到的x就是0-1范围的值

如果需要在其他范围的映射(a,b)得到0-1的x在进行运算

x_scaled = (b-a)x+a

sklearn.preprocessing.MinMaxScaler 缩放 范围元组

import sklearn.preprocessingdata = np.random.randint(0,46,(3,3))
transf = sklearn.preprocessing.MinMaxScaler((0,1))
trans_data = transf.fit_transform(data)
print('data',data)
print('transf_data',trans_data)'''
data [[42 12 20][24 24 43][28 12 28]]
transf_data [[1.         0.         0.        ][0.         1.         1.        ][0.22222222 0.         0.34782609]]
'''
  • 标准化StandardScaler

根据数据的均值和方差,把数据转化为均值为0,标准差为1 的分布

x = (x-μ)/σ

μ是均值,σ是标准差

# 标准化
data = np.random.randint(0,1000,(3,3))
transf = sklearn.preprocessing.StandardScaler()
trans_data = transf.fit_transform(data)
print('data',data)
print('transf_data',trans_data)'''
data [[592 750 354][870 844 989][217 480 371]]
transf_data [[ 0.12084303  0.38025112 -0.73568456][ 1.15984392  0.98951711  1.41382324][-1.28068695 -1.36976822 -0.67813868]]
'''

特征降维

数据集中的特征并都是有用的,有的特征可以通过其他特征表示,也就是两个特征有相关性。同时,一些相同的数据特征,方差较小,不能区别出不同类型的样本,这样的特征是冗余的。

对这些特征进行降维,去除特征,可以提高计算效率

  • 特征选择

    • 低方差特征过滤
    # 低方差过滤  
    import sklearn.feature_selectiondata = [[10,1],[10,2],[10,3],[10,4],[10,5],[10,6],[10,7],
    ]
    select = sklearn.feature_selection.VarianceThreshold(1)
    new_data = select.fit_transform(data)
    new_data'''
    array([[1],[2],[3],[4],[5],[6],[7]])
    '''
    
    • 相关系数特征选择
    # 相关系数特征选择
    from scipy.stats import pearsonr
    data = np.array([[i,i*10] for i in range(10)])
    r = pearsonr(data[:,0],data[:,1])
    print(r)
    print(r.statistic) # 相关性
    print(r.pvalue) #  皮尔逊系数的p值 相关性显著水平 
    '''
    PearsonRResult(statistic=1.0, pvalue=0.0)
    1.0
    0.0
    '''
  • 主成分分析

    • PCA

    通过矩阵线性变换,保留样本方差最大的特征值,得到新的特征,每个新的特征就是一个主成分

    PCA n_components 参数是整数,保留多少特征,小数,保存多少比例的信息

    import sklearn.decomposition
    import numpy as npnp.random.seed(10) # 随机种子
    data = np.random.random_sample((5,10))
    transf = sklearn.decomposition.PCA(n_components=0.7)  # 保留70%的方差
    new_data = transf.fit_transform(data)
    print(data)
    print(new_data)'''
    [[0.77132064 0.02075195 0.63364823 0.74880388 0.49850701 0.224796650.19806286 0.76053071 0.16911084 0.08833981][0.68535982 0.95339335 0.00394827 0.51219226 0.81262096 0.612526070.72175532 0.29187607 0.91777412 0.71457578][0.54254437 0.14217005 0.37334076 0.67413362 0.44183317 0.434013990.61776698 0.51313824 0.65039718 0.60103895][0.8052232  0.52164715 0.90864888 0.31923609 0.09045935 0.300700060.11398436 0.82868133 0.04689632 0.62628715][0.54758616 0.819287   0.19894754 0.8568503  0.35165264 0.754647690.29596171 0.88393648 0.32551164 0.1650159 ]][[-0.6061961  -0.19193152][ 1.03258766 -0.05359811][ 0.16724648 -0.43674706][-0.67480645  0.0573277 ][ 0.08116841  0.62494898]]
    '''

这篇关于【机器学习】特征提取 特征降维的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093846

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件