各种数据降维方法ICA、 ISOMAP、 LDA、LE、 LLE、MDS、 PCA、 KPCA、SPCA、SVD、 JADE

2024-08-29 17:36

本文主要是介绍各种数据降维方法ICA、 ISOMAP、 LDA、LE、 LLE、MDS、 PCA、 KPCA、SPCA、SVD、 JADE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 独立分量分析 ICA
等度量映射 ISOMAP
线性判别分析 LDA
(拉普拉斯)数据降维方法 LE
局部线性嵌入 LLE
多维尺度变换MDS
主成分分析 PCA
核主成分分析 KPCA
稀疏主成分分析SPCA
奇异值分解SVD
特征矩阵的联合近似对角化 JADE

各种数据降维方法(matlab代码)代码获取戳此处代码获取戳此处



降维目的:克服维数灾难,获取本质特征,节省存储空间,去除无用数据,实现数据可视化。

目前很多实验所需要的数据均为高维数据,也就是多列变量值决定目标值。高维数据有一定的优点,数据维度高,则其所包含的信息量就大,则可供决策的依据就较多。但是数据不是维度越高越好,因为还需要考虑实际的计算能力,高维度数据的缺点,消耗计算资源,计算时间大,同时使得冗余且耦合的数据对实验结果造成影响,甚至造成“维度灾难”。所以为了适应需要,获取数据的本质特征,降维算法随之诞生。以下是对提到的各种数据分析方法的简要分析:

  1. 独立分量分析 (ICA)

独立分量分析是一种计算方法,用于从多元统计数据中找到隐藏的因子或成分,这些因子或成分在统计上是尽可能独立的。ICA在信号处理、神经科学和盲源分离等领域有广泛应用。

  1. 等度量映射 (ISOMAP)

等度量映射是一种非线性降维技术,它试图保持数据点之间的测地距离(即两点之间的最短路径距离)。ISOMAP特别适用于发现嵌入在高维空间中的低维流形结构。

  1. 线性判别分析 (LDA)

线性判别分析是一种监督学习方法,用于分类和降维。它通过找到一个投影方向,使得同类之间的投影点尽可能接近,而不同类之间的投影点尽可能远离。

  1. (拉普拉斯)数据降维方法 (LE)

拉普拉斯特征映射(Laplacian Eigenmaps,简称LE)是一种基于图的非线性降维技术。它构建了一个表示数据点之间相似性的图,并试图保持数据点之间的局部邻接关系。

  1. 局部线性嵌入 (LLE)

局部线性嵌入是一种无监督的非线性降维方法。它假设数据点可以由其局部邻域的线性组合近似,并试图在降维后的空间中保持这种局部线性关系。

  1. 多维尺度变换 (MDS)

多维尺度变换是一种统计技术,用于将高维空间中的对象(如观测值或变量)映射到低维空间,同时尽可能保留对象之间的相似性。

  1. 主成分分析 (PCA)

主成分分析是一种广泛使用的线性降维技术。它通过正交变换将原始特征转换为一组线性不相关的新特征,称为主成分,这些主成分按照方差大小排序。

  1. 核主成分分析 (KPCA)

核主成分分析是PCA的非线性扩展,它通过使用核函数将数据映射到高维特征空间,然后在这个空间中执行PCA。这使得KPCA能够发现数据中的非线性结构。

  1. 稀疏主成分分析 (SPCA)

稀疏主成分分析是PCA的一个变种,它试图找到的主成分在原始特征上具有稀疏性,即大部分系数为零。这有助于解释性和可解释性。

  1. 奇异值分解 (SVD)

奇异值分解是一种在线性代数中常用的方法,它可以对矩阵进行分解,类似于PCA中的协方差矩阵分解。SVD在信号处理、图像处理等领域有广泛应用。

  1. 特征矩阵的联合近似对角化 (JADE)

特征矩阵的联合近似对角化是一种用于盲源分离的技术,特别是用于独立分量分析。它试图通过联合对角化多个特征矩阵来找到一组独立的源信号。

这些技术各自具有不同的特点和适用场景,选择哪种方法取决于数据的性质、问题的需求以及计算资源的限制。

%加载数据,数据为480*8的矩阵,总共12类,每类40*8,这是对12类进行聚类
clc
clearload('data.mat')
addpath('Fun')
%% 进行二维可视化,需要生长与数据相对应的标签
mm=40; % mm为每类样本数
lable=[ones(mm,1); 2*ones(mm,1); 3*ones(mm,1); 4*ones(mm,1);...5*ones(mm,1); 6*ones(mm,1); 7*ones(mm,1); 8*ones(mm,1);...9*ones(mm,1); 10*ones(mm,1); 11*ones(mm,1); 12*ones(mm,1)];%% 利用降维方法对数据进行降维处理,二维可视化,就降到2维,三维可视化,就降到3维k=3; %最近邻数,这个参数影响聚类效果
d=3;% 最终降到的维度,2
lambda = 1; % 正则化系数data2DLLE = LLE(data, k, d); %生成2D降维数据
data2Dtran = LE(data, k , d);
% [U,D,V]=MySVD(data);
[alpha, w, err] = spca(data, d, lambda);
eig_vec_selected=PCA(data',d);
reduced_features=LDA(data,lable);
data_kpca=KPCA(data,d);
[A,S]=jade(data,d);
%MDSMat = MyMDS(data', d);%data需要方阵
% Z = isomap(data', k, d);%data需要方阵
%ZZ = MDS(data, d); %data需要方阵

这篇关于各种数据降维方法ICA、 ISOMAP、 LDA、LE、 LLE、MDS、 PCA、 KPCA、SPCA、SVD、 JADE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118513

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行