首页
Python
Java
前端
数据库
Linux
Chatgpt专题
开发者工具箱
isomap专题
各种数据降维方法ICA、 ISOMAP、 LDA、LE、 LLE、MDS、 PCA、 KPCA、SPCA、SVD、 JADE
独立分量分析 ICA 等度量映射 ISOMAP 线性判别分析 LDA (拉普拉斯)数据降维方法 LE 局部线性嵌入 LLE 多维尺度变换MDS 主成分分析 PCA 核主成分分析 KPCA 稀疏主成分分析SPCA 奇异值分解SVD 特征矩阵的联合近似对角化 JADE 各种数据降维方法(matlab代码)代码获取戳此处代码获取戳此处 降维目的:克服维数灾难,获取本质特征,节省存储空
阅读更多...