pca专题

主成分分析PCA详解(二)

我不生产自己不熟悉的内容,我只是陌生内容的搬运工!向原作致敬! 转载自:http://blog.csdn.net/jzwong/article/details/45699097  作者:jzwong 一、简介        PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经

主成分分析PCA详解(一)

对理解PCA非常好的一篇文章,留着以防以后忘记 原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun 降维的必要性 1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。 2.高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%。

PCA降维深入理解

网上资料非常多,大部分都是讲先求协方差,协方差怎么求的,但是没有讲为什么要求协方差,为什么要选特征值最大的特征,特征值最大到底代表了什么含义。 简单回忆:         计算协方差到底是选行还是选列呢,记住协方差矩阵是计算不同维度间的协方差,不是两个样本间的,所以我们求协方差的目的就是计算不同纬度之间的相关性,并选出特征值最大的前多少个纬度,把特征值小的纬度去掉,起到一个降维的作用 PCA

【Python机器学习实战】 | 基于PCA主成分分析技术读入空气质量监测数据进行数据预处理并计算空气质量综合评测结果

🎩 欢迎来到技术探索的奇幻世界👨‍💻 📜 个人主页:@一伦明悦-CSDN博客 ✍🏻 作者简介: C++软件开发、Python机器学习爱好者 🗣️ 互动与支持:💬评论      👍🏻点赞      📂收藏     👀关注+ 如果文章有所帮助,欢迎留下您宝贵的评论, 点赞加收藏支持我,点击关注,一起进步! 引言 主成分分析(Principal Component

PCA使用SVD解决

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html  主成分分析在上一节里面也讲了一些,这里主要谈谈如何用SVD去解PCA的问题。PCA的问题其实是一个基的变换,使得变换后的数据有着最大的方差。方差的大小描述的是一个变量的信息量,我们在讲一个东西的稳定性的时候,往往说要减小方差,如果一个模

文本挖掘之降维之特征抽取之主成分分析(PCA)

PCA(主成分分析) 作用: 1、减少变量的的个数 2、降低变量之间的相关性,从而降低多重共线性。 3、新合成的变量更好的解释多个变量组合之后的意义 PCA的原理: 样本X和样本Y的协方差(Covariance): 协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。 Cov(X,X)就是X的方差(Variance).

【转】主成分分析(PCA)原理解析

本文转载于 http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html 主成分分析(Principal components analysis)-最大方差解释      在这一篇之前的内容是《Factor Analysis》,由于非常理论,打算学完整个课程后再写。在写这篇之前,我阅读了PCA、SVD和LD

PCA 在图像分析上的应用

同一物体旋转角度求取 直接上代码: import cv2, osimport numpy as npimport timedef perform_pca(image, num_components):# 将图像转换为浮点型img_float = np.float32(image)img_flatten = img_float.reshape(-1, 2)# 计算均值和协方差矩阵mean,

大规模数据的PCA降维

20200810 - 0. 引言 最近在做的文本可视化的内容,文本处理的方法是利用sklearn的CountVer+Tf-idf,这样处理数据之后,一方面数据的维度比较高,另一方面呢,本身这部分数据量也比较大。如果直接使用sklearn的pca进行降维,会很慢,而且pca也没有n_jobs来支持多线程工作。不过,我看到spark中已经支持的pca了,所以希望通过spark来实现这部分内容。

PCA降维算法

decomposition.h #pragma once#include <arrayfire.h>namespace decomposition{class PCA{public:af::array zero_centred(af::array

模式识别五--PCA主分量分析与Fisher线性判别

文章转自:http://www.kancloud.cn/digest/prandmethod/102847         本实验的目的是学习和掌握PCA主分量分析方法和Fisher线性判别方法。首先了解PCA主分量分析方法的基本概念,理解利用PCA 分析可以对数据集合在特征空间进行平移和旋转。实验的第二部分是学习和掌握Fisher线性判别方法。了解Fisher线性判别方法找的最优方向与非

特征值分解、奇异值分解、PCA概念整理

特征值分解、奇异值分解、PCA概念整理 一、特征值与特征向量的几何意义 1.     矩阵乘法 在介绍特征值与特征向量的几何意义之前,先介绍矩阵乘法的几何意义。 矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度的新向量。在这个变化过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某些向量只发生伸缩变换,不产生旋转效果,那么这些向量就称为这

PCA与LDA

共同点 降维方法: PCA和LDA都是数据降维的方式,它们都能通过某种变换将原始高维数据投影到低维空间。 数学原理: 两者在降维过程中都使用了矩阵特征分解的思想,通过对数据的协方差矩阵或类间、类内散度矩阵进行特征分解,找到数据中的主要变化方向或分类方向。 高斯分布假设: PCA和LDA在应用中通常都假设数据符合高斯分布,这一假设是最优的。 不同点 监督与非监督: PCA是一种无监督

微生信神助力:在线绘制发表级主成分分析(PCA)图

主成分分析(Principal components analysis,PCA)是一种线性降维方法。它利用正交变换对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。PCA是一种对数据进行简化分析的技术,这种方法可以有效地找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏

论文阅读(一种新的稀疏PCA求解方式)Sparse PCA: A Geometric Approach

这是一篇来自JMLR的论文,论文主要关注稀疏主成分分析(Sparse PCA)的问题,提出了一种新颖的几何解法(GeoSPCA)。 该方法相比传统稀疏PCA的解法的优点:1)更容易找到全局最优;2)计算效率更高;3)因为不再需要计算存储整个协方差矩阵,所以对存储资源需求更少;4)GeoSPCA能够一次性构建所有主成分,而不是通过迭代的方式逐步添加,这有助于避免因迭代过程中的数据秩减而导致的信息损

【PCA降维】

笔者粗浅归纳:     PCA降维,主要运用了两个概念:方差 & 协方差。     我们需要用方差,去计算使得样本映射后相互距离最大的基;                   用协方差,去得到最不相关的基;     通过推导可知,若计算所需的降维矩阵(找到基拼成矩阵),                              只需要计算样本协方差矩阵,计算特征值和对应的特征向量(SVD

【Python机器学习】PCA——特征提取(2)

上一篇写过了用单一最近邻分类器训练后的精度只有0.22. 现在用PCA。想要度量人脸的相似度,计算原始像素空间中的距离是一种相当糟糕的方法。用像素表示来比较两张图像时,我们比较的是每个像素的灰度值与另一张图像对应位置的像素灰度值。这种表示与人们对人脸图像的解释方式有很大不同,使用这种原始表示很难获取到面部特征。例如,如果使用像素距离,那么将人脸向右移动一个像素将发生巨大变化,得到一个完全不同的表

【Python机器学习】PCA——特征提取(1)

PCA的一个重要应用是特征提取。特征提取背后的思想是,可以找到一种数据表示,比给定的原始表示更适合于分析。特征提取很有用,它的一个很好的应用实例就是图像。图像由像素组成,通常存储于红绿蓝强度。图像中的对象通常由上千个像素组成,它们只有放在一起才有意义。 下面给出PCA对图像做特征提取的一个简单应用,即处理Wild数据集Labeled Faces(标记人脸)中的人脸图像。这一数据集包含很多互联网上

跟我一起学scikit-learn21:PCA算法

PCA算法全称是Principal Component Analysis,即主成分分析算法。它是一种维数约减(Dimensionality Reduction)算法,即把高维度数据在损失最小的情况下转换为低维度数据的算法。显然,PCA可以用来对数据进行压缩,可以在可控的失真范围内提高运算速度。 1.PCA算法原理 我们先从最简单的情况谈起。假设需要把一个二维数据降维成一维数据,要怎么做呢?如下

【Python机器学习】将PCA用于cancer数据集并可视化

PCA最常见的应用之一就是将高维数据集可视化。一般对于有两个以上特征的数据,很难绘制散点图,。对于Iris(鸢尾花)数据集,我们可以创建散点矩阵图,通过展示特征所有可能的两两组合来展示数据的局部图像。 不过类似cancer数据集,包含30个特征,这就导致需要绘制30*14=420张散点图。 不过还可以用一种简单的可视化方法——对每个特征分别计算两个类别的直方图: import mglearn

【Python机器学习】主成分分析(PCA)

主成分分析(PCA)是一种旋转数据集的方法,旋转后的数特征在统计上不相关。在做完这种旋转之后,通常是根据新特征对解释数据的重要性来选择它的一个子集。 举例: import mglearn.plotsimport matplotlib.pyplot as pltmglearn.plots.plot_pca_illustration()plt.show() 第一张图(左上)显示的是原始数

sklearn PCA使用

两篇文章结合了解: scikit-learn中PCA的使用方法 用scikit-learn学习主成分分析(PCA) 其中一篇是(防删除): 在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维。 1. scikit-learn PCA类介绍     在scikit-lear

PCA和Softmax学习

PCA和Softmax学习 老师上课说PCA(主成分分析)简单,不用讲,简单是简单,但也要看看,主要就是看fuldl上的教程,然后自己推导和matlab实现。 PCA pca算法 pca是一种降维方法,可以看做是逐一取方差最大方向,就是对协方差矩阵做特征值分解,取最大特征值所对应的方向。算法描述如下: 1 对所有样本进行中心化: xi x_{i} <— xi−1m∑mi=1xi x_{i

《机器学习实战》(十三)—— PCA

http://blog.csdn.net/u011239443/article/details/77363466 协方差矩阵 统计学的基本概念 协方差 上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计

使用PCA实现人脸变换(从一个人脸渐变为另一个)(一)

原理         PCA方式用于提取相似样本的共有特征,将样本投影到特征向量构成的特征空间可以使用较少的量表示原本复杂的量。在此的基础上,使用投影值可以重构出样本。若特征空间提取优良的话,重构出来的样本与原始样本将非常相似。因此可以通过重构的方式来实现人脸的变换。         本文原理:①将两个不同的人脸投影到特征空间,获得两个样本各自的投影坐标(n维,n为特征向量的数量);②在n维空

人体头像面部的二维主成分分析(2D PCA)

刚开始写博客,如果有什么不对的地方,请大家帮忙指出,谢谢! 二维PCA介绍 在前一篇文章《PCA算法:从一组照片中获取特征脸(特征向量)》中,介绍了对人像进行一维PCA处理的过程及结果,并提取显示了特征脸。在后续应用中可以使用特征脸空间来表示人像,是数据从m*n(图片尺寸为m*n)的大小缩减到了p(p为选取的前p个特征脸)。再进行人脸识别、检测的时候只需要处理明显的特征,并且具有数据量大大减小