PCA降维奇异值分解SVD

2024-08-31 11:38
文章标签 降维 分解 pca svd 奇异

本文主要是介绍PCA降维奇异值分解SVD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PCA降维

涉及高维数据的问题容易陷入维数灾难,随着数据集维数的增加,算法学习所需的样本数量呈指数级增加,且需要更多的内存和处理能力,消耗资源。主成分分析也称为K-L变换,常用于高位数据预处理和可视化。PCA可以把可能具有相关性的高维变量合成线性无关的低维变量,称为主成分。原理就是PCA将高维具有相关性的数据进行线性变换映射到一个低维子空间,尽可能多的保留更多变量(代表原特征),降维成一个线性无关的低维数据集。当数据集不同维度上的方差分布不均匀的时候,PCA最有用。选取方差最大的方向作为第一个主成分,第二个主成分选择方差次大的方向,并且与第一个正交。

方差:度量一组数据分散的程度;

协方差:度量两个变量的变动的同步程度,即度量两个变量线性相关性程度

特征值和特征向量,矩阵的主成分是由其协方差矩阵的特征向量按照对应的特征值大小排序得到的,最大的特征值就是第一主成分,第二大特征值就是第二主成分。

计算数据的主成分可以用计算数据协方差的方法和矩阵奇异值分解SVD的方法。

应用:人脸识别中特征脸的构造用到了PCA降维,对于样本少,特征维数高的时候特别适用。

奇异值分解SVD

奇异值分解将矩阵分解成若干个秩一矩阵(矩阵的秩为1)之和。奇异值往往对应着矩阵中隐含的重要信息,且重要性和奇异值大小正相关,奇异值分解可以应用于图像处理,数据压缩,图像去噪。

奇异值分解的几何意义:对于任意一个矩阵,我们要找到一组两两正交单位向量序列,使得矩阵作用在此向量序列上后得到新的向量序列保持两两正交,奇异值为变换后新的向量序列的长度。通俗一点的:将一组正交基映射到另一组正交基(旋转、拉伸、投影)。



这篇关于PCA降维奇异值分解SVD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123796

相关文章

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

保研 比赛 利器: 用AI比赛助手降维打击数学建模

数学建模作为一个热门但又具有挑战性的赛道,在保研、学分加分、简历增色等方面具有独特优势。近年来,随着AI技术的发展,特别是像GPT-4模型的应用,数学建模的比赛变得不再那么“艰深”。通过利用AI比赛助手,不仅可以大大提升团队效率,还能有效提高比赛获奖几率。本文将详细介绍如何通过AI比赛助手完成数学建模比赛,并结合实例展示其强大功能。 一、AI比赛助手的引入 1. 什么是AI比赛助手? AI比

连分数因子分解法——C语言实现

参考网址:连分数分解法寻找整数的因子(Python)-CSDN博客 大数运算:C语言实现 大数运算 加减乘除模运算 超详细_64编程 加减乘除取模 复杂运算-CSDN博客 ‌连分数因子分解法‌是一种用于大整数因子分解的算法,它是计算数论中的一个重要方法。连分数因子分解法通过寻找x2≡y2 (mod p)x2≡y2 (mod p)的形式来分解N。具体来说,这种方法涉及到计算N的简单连分数展开,并

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积

《机器学习》 基于SVD的矩阵分解 推导、案例实现

目录 一、SVD奇异值分解 1、什么是SVD 2、SVD的应用         1)数据降维         2)推荐算法         3)自然语言处理 3、核心         1)什么是酉矩阵         2)什么是对角矩阵 4、分解过程 二、推导 1、如何求解这三个矩阵         1)已知:          2)根据酉矩阵的特点即可得出:

SVD降维

文章目录 一、SVD降维的基本原理二、SVD降维的步骤三、SVD降维的优点四、SVD降维的应用五、代码应用六、SVD降维的局限性 一、SVD降维的基本原理 SVD是线性代数中的一种技术,它将一个矩阵A分解为三个矩阵的乘积:A = UΣV^T。其中,U和V是正交矩阵,Σ是对角矩阵,对角线上的元素称为奇异值。这些奇异值表示了矩阵A在各个方向上的“重要性”或“能量”。 在降维过程中,

奇异值与特征值基础

一、奇异值与特征值基础知识:     特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:    1)特征值:     如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:     这时候λ就被称为特征向量v对应的特征值,一个

[干货汇总]LSA及SVD介绍

1. 前言 近期在看关于NER(Named Entity Recognition)的paper,里面涉及到的几个机器学习的算法,需要学习一下,在网上看了一些相关干货,汇总一下前人智慧。 首先贴出几篇写的还不错的blog blog1 LSA潜在语义分析 该blog是在Wiki中翻译过来,翻译的反正比我看原文理解的好,进行初步了解还是不错的。 blog2 SVD矩阵奇异值分解 &&

《机器学习》PCA数据降维 推导、参数讲解、代码演示及分析

目录 一、主成分分析 1、什么是主成分分析? 2、什么是降维? 3、如何进行主成分分析         1)数据标准化         2)计算协方差矩阵         3)计算特征值和特征向量         4)选择主成分         5)构建投影矩阵         6)数据降维 4、为什么要进行主成分分析         1)数据可视化         2)

《机器学习》—— PCA降维

文章目录 一、PCA降维简单介绍二、python中实现PCA降维函数的介绍三、代码实现四、PCA降维的优缺点 一、PCA降维简单介绍 PCA(主成分分析,Principal Component Analysis)是一种常用的数据降维技术。它通过线性变换将原始数据转换到新的坐标系统中,使得任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,