《机器学习》 基于SVD的矩阵分解 推导、案例实现

2024-09-07 01:20

本文主要是介绍《机器学习》 基于SVD的矩阵分解 推导、案例实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、SVD奇异值分解

1、什么是SVD

2、SVD的应用

        1)数据降维

        2)推荐算法

        3)自然语言处理

3、核心

        1)什么是酉矩阵

        2)什么是对角矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量

                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

2、代码演示

运行结果为:

代码调试状态:


一、SVD奇异值分解

1、什么是SVD

        SVD就是奇异值分解。在机器学习中,SVD是一种常用的矩阵分解方法,用于将一个矩阵分解为三个矩阵的乘积。具体来说,对于一个m×n的实数矩阵A,SVD将其分解为以下形式:

                A = UΣV^T

        其中,U是一个m×m的正交矩阵Σ是一个m×n的对角矩阵V^T是一个n×n的正交矩阵。Σ的对角线上的元素称为奇异值,表示原始矩阵A在对应的奇异向量方向上的重要程度

2、SVD的应用

        1)数据降维

                可以通过保留最重要的奇异值和对应的奇异向量,将原始数据降维到一个较低维度的表示,以减少数据的冗余和计算复杂度。

        2)推荐算法

                SVD可以分解用户-项目评分矩阵,从而得到用户和项目在一个低维的潜在空间中的表示,进而进行推荐。

        3)自然语言处理

                SVD可以用于词向量的降维和表示,从而实现语义分析任务,如文本分类、情感分析、语义相似度计算,也可以用于对大规模文本数据进行降维和压缩,从而提高文本处理和存储的效率。

3、核心

        对于任意矩阵A,我们总能够将其分解位三个矩阵𝑈 𝛴 𝑉 𝑇 。
其中: \bigcup 为酉矩阵\sum 为对角阵V^{T} 为酉矩阵

        1)什么是酉矩阵

                酉矩阵是线性代数中的一种特殊类型的矩阵。一个n×n的复矩阵U被称为酉矩阵,如果它满足以下条件:

                1、U的共轭转置乘以U的结果等于单位矩阵I:U^H × U = I,其中U^H表示U的共轭转置。

                2、U的逆矩阵等于它的共轭转置:U^(-1) = U^H。

        2)什么是对角矩阵

                对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵

4、分解过程

二、推导

1、如何求解这三个矩阵

        1)已知: 

        2)根据酉矩阵的特点即可得出:

        3)隐含条件:

        4)计算:

        5)结论

                        𝑈:𝐴𝐴^𝑇 的特征向量.
                        𝛴^2:𝐴𝐴^ 𝑇 的特征值.
                        𝑉:𝐴^𝑇 𝐴 的特征向量

2、实例

        1)求U与V对应的协方差矩阵

        2)求各自协方差矩阵对应的特征值和特征向量
                • 求A^T A对应的特征值和特征向量

                • 求 A A^T 对应的特征值和特征向量

三、代码实现

1、导包

pip install pillow

2、代码演示

import numpy as np
from PIL import Image   # 导入PIL库中的Image模块,用于处理图像文件
import matplotlib.pyplot as plt  # 导入绘图库def pic_compress(k,pic_array):   # k表示保留的奇异值数量,pic_array表示输入的图像数组global u,sigma,vt,sig,new_pic  # 定义全局变量u,sigma,vt = np.linalg.svd(pic_array)   # 使用np库中的linalg模块的svd方法,对图像的数值进行奇异值分解,得到三个矩阵U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上的元素称为奇异值sig = np.eye(k) * sigma[:k]   # 使用np中的函数eye生成一个kxk的单位矩阵,上述生成的sigma为奇异值,现在取前k个值,将其转换成对角矩阵,即对角线上的值为奇异值,其余值为0new_pic = np.dot(np.dot(u[:,:k],sig),vt[:k,:]) # dot用于执行数组乘法size = u.shape[0] * k + sig.shape[0] * sig.shape[1] + k * vt.shape[1]  # 变换后的图像为u矩阵、sigma矩阵和vt矩阵,这里计算图像的大小return new_pic,size  # 返回压缩后的图像数值和尺寸大小img = Image.open('timg.jpg')  # 打开图像
ori_img = np.array(img)   # 将图像转换成numpy数组
new_img ,size = pic_compress(100,ori_img)  # 调用pic_compress函数对图像进行压缩,导入图片数组,100表示保留的前100个奇异值
print('original size:'+ str(ori_img.shape[0]*ori_img.shape[1]))  # 原始图片的大小,shape[0]和[1]分别表示行数和列数
print('compress size:' + str(size))  # 打印压缩后的像素大小fig,ax = plt.subplots(1,2)  # 设置画布有两张图,fig是整个图像的窗口对象,ax是两个图像的数组
ax[0].imshow(ori_img,cmap='gray')  # 展示第一个图形,为原始图像,cmp='gray'表示图像以灰度图展示
ax[0].set_title('before compress')   # 设置第一个图像的标题
ax[1].imshow(new_img,cmap='gray')   # 展示第二个图像,为压缩后的图像
ax[1].set_title("after compress")
plt.show()
运行结果为:

左侧为原始图像,右侧为压缩后图像,他们的大小为:

代码调试状态:

这篇关于《机器学习》 基于SVD的矩阵分解 推导、案例实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143658

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi