数学建模学习(115):主成分分析(PCA)与Python实践

2024-08-23 08:36

本文主要是介绍数学建模学习(115):主成分分析(PCA)与Python实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一.主成分分析简介
      • 1.1 数学背景与维度诅咒
      • 1.2 PCA的定义与应用
    • 二.协方差矩阵——特征值和特征向量
    • 三.如何为数据集选择主成分数量
    • 四.特征提取方法
    • 五.LDA——与PCA的区别
    • 六.PCA的应用
    • 七.PCA在异常检测中的应用
    • 八.总结

一.主成分分析简介

1.1 数学背景与维度诅咒

主成成分分析(PCA)是一种广泛使用的算法,用于从高维数据中提取主要特征,以便更有效地用于机器学习(ML)模型。从数学上讲,维度是指在空间中指定一个向量所需的最少坐标数。在高维空间中计算两个向量之间的距离需要大量的计算资源,因此随着维度的增加,计算复杂性迅速提升,这就是所谓的“维度诅咒”(见图1.1)。这种现象使得许多机器学习算法的效率难以提高。随着数据维度的增加,数据的稀疏性增加,计算距离和密度的努力呈指数级增长。从理论上讲,维度的增加通常会增加大数据集中的噪声和冗余。因此,PCA被广泛应用于应对高维问题中的复杂性。

在这里插入图片描述

PCA起源于线性代数,基本上是一种数据预处理方法,通过将数据投影到较低维度的子空间中,保留数据的主要信息,同时减少数据集中的冗余特征。这种技术广泛应用于高维数据的可视化、降维和分类任务中。PCA遵循主轴定理,其主要目标是通过寻找正交基来优化数据表示,按重要性或方差对维度进行排序,丢弃次要的维度,并集中关注主要的无关成分。

1.2 PCA的定义与应用

PCA是一种无监督方法,用于减少高维数据集的特征数量。通过矩阵分解(或分解)来将未标记的数据集减少为其组成部分,然后根据方差对这些部分进行排序。代表原始数据的投影数据成为训练ML模型的输入。

PCA定义

这篇关于数学建模学习(115):主成分分析(PCA)与Python实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098877

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An