Python——常用数据降维算法应用

2024-06-22 21:52

本文主要是介绍Python——常用数据降维算法应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着数据的积累,数据的维度越来越高,高维的数据在带来更多信息的同时,也带来了信息冗余、计算困难等问题,所以对数据进行合理的降维,并保留主要信息非常重要。这些问题主要可以通过主成分分析及相关的降维算法来解决。

一些经典的降维算法有:主成分分析、MSD降维、t-SNE降维等。

1: 数据准备

将会使用手写体数字数据,该数据一共有1797个样本,每个图像包含64个像素值,数据导入后的情况如下所示:

## 导入数据,该数据有1797个样本,每个图像包含64个像素值
digit = pd.read_csv("data/chap06/digit.csv",header=None)
## 获取待使用的数据
digitX = digit.values[:,0:-1]/16
digitY = digit.values[:,64]
digit

2: 主成分分析数据降维

主成分分析可以通过Sklearn库中的PCA来完成,下面的程序对前面的手写数字数据集,使用主成分分析将其降维到64维,然后可视化分析每个主成分的解释方差,以及主成分的累计方差贡献率,运行程序后可获得可视化图像。

## 对数据进行主成分降维分析
pca = PCA(n_components = 64,  # 获取的主成分数量random_state = 123# 设置随机数种子,保证结果的可重复性
## 对数据进行降维
digitX_pca = pca.fit_transform(digitX)## 可视化分析每个主成分的解释方差和解释方差所占百分比
x = np.arange(digitX_pca.shape[1])+1
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
plt.plot(x,pca.explained_variance_,"r-o")
plt.xlabel("主成分个数")
plt.ylabel("解释方差")
plt.title("解释方差变化情况")
plt.subplot(1,2,2)
plt.plot(x,np.cumsum(pca.explained_variance_ratio_),"b-s")
plt.xlabel("主成分个数")
plt.ylabel("解释方差")
plt.title("累计解释方差贡献率变化情况")
plt.tight_layout()
plt.show()

可以发现:数据中的在大约20个主成分之后,每个主成分的解释方差已经接近于0,而且前20个主成分的原始数据解释能力超过了百分之90,说明从主成分特征中选取其中的前20个即可代表该数据。

针对主成分数据降维的效果,可以使用其前3个主成分,利用可视化的方式,查看算法的数据降维效果。

3: 流形学习——等距映射

流形学习中的等距嵌入降维算法,可以通过Isomap()来完成,下面的程序是通过流形学习,将手写数字数据集降维到3维空间中,然后使用可视化的方式绘制降维后的3D散点图。

## 流形学习将数据降维到3维空间中
isom = Isomap(n_neighbors=5, n_components=3) 
digitX_isom = isom.fit_transform(digitX)
## 在三维空间中可视化前三个特征数据分布散点图
plotdata3D(digitX_isom,digitY,"流形学习特征")

4: t-SNE数据降维

t-SNE降维算法,可以通过TSNE()来完成,下面的程序是通过t-SNE降维算法,将手写数字数据集降维到3维空间中,然后使用可视化的方式绘制降维后的3D散点图。

## t-SNE将数据降维到3维空间中
tsne = TSNE(n_components=3, perplexity=20,early_exaggeration=5, random_state=123) 
digitX_tsne = tsne.fit_transform(digitX)
## 在三维空间中可视化前三个特征数据分布散点图
plotdata3D(digitX_tsne,digitY,"TSNE特征")

参考文献:《Python机器学习:基础、算法与实战》作者:孙玉林 出版社:化学工业出版社

欢迎关注我们

欢迎加入我们的QQ交流群获取使用的数据:837977579

欢迎关注我们的微信公众号“Adam大数据分析小站”获取更多内容

今天的分享就到这里了,敬请期待下一篇!

最后欢迎大家分享转发,您的点赞是对我的鼓励和肯定!

这篇关于Python——常用数据降维算法应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1085511

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操