「热图」ComplexHeatmap展示单细胞聚类

2024-06-23 20:18

本文主要是介绍「热图」ComplexHeatmap展示单细胞聚类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实用Seurat自带的热图函数DoHeatmap绘制的热图,感觉有点不上档次,于是我尝试使用ComplexHeatmap这个R包来对结果进行展示。

个人觉得好的热图有三个要素

  • 聚类: 能够让别人一眼就看到模式
  • 注释: 附加注释能提供更多信息
  • 配色: 要符合直觉,比如说大部分都会认为红色是高表达,蓝色是低表达

在正式开始之前,我们需要先获取一下pbmc的数据,Seurat提供了R包SeuratData专门用于获取数据

devtools::install_github('satijalab/seurat-data')
library(SeuratData)
InstallData("pbmc3k")

加载数据并进行数据预处理,获取绘制热图所需的数据

library(SeuratData)
library(Seurat)
data("pbmc3k")
pbmc <- pbmc3k
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)
all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
pbmc <- FindNeighbors(pbmc, dims = 1:10)
pbmc <- FindClusters(pbmc, resolution = 0.5)pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

先感受下Seurat自带热图

top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
DoHeatmap(pbmc, features = top10$gene)   NoLegend()

Seurat-heatmap

下面则是介绍如何用R包ComplexHeatmap进行组图,虽然这个R包名带着Complex,但是并不是说这个R包很复杂,这个Complex应该翻译成复合,也就是说这个R包能在热图的基础上整合很多信息。

先安装并加载R包。

BiocManager::install("ComplexHeatmap")
library(ComplexHeatmap)

为了手动绘制一个热图,要从Seurat对象中提取所需要的表达量矩阵。我提取的是原始的count值,然后用log2(count 1)的方式进行标准化

mat <- GetAssayData(pbmc, slot = "counts")
mat <- log2(mat   1)

获取基因和细胞聚类信息

gene_features <- top10
cluster_info <- sort(pbmc$seurat_annotations)

对表达量矩阵进行排序和筛选

mat <- as.matrix(mat[top10$gene, names(cluster_info)])

Heatmap绘制热图。对于单细胞这种数据,一定要设置如下4个参数

  • cluster_rows= FALSE: 不作行聚类
  • cluster_columns= FALSE: 不作列聚类
  • show_column_names=FALSE: 不展示列名
  • show_row_names=FALSE: 不展示行名,基因数目不多时候可以考虑设置为TRUE
Heatmap(mat,cluster_rows = FALSE,cluster_columns = FALSE,show_column_names = FALSE,show_row_names = TRUE)

Heatmap-1

从图中,我们可以发现以下几个问题:

  • 长宽比不合理,当然这和绘图函数无关,可以在保存时修改长宽比
  • 基因名重叠,考虑调整大小,或者不展示,或者只展示重要的基因
  • 颜色可以调整
  • 缺少聚类信息

这些问题,我们可以通过在ComplexHeatmap Complete Reference查找对应信息来解决。

配色方案

在热图中会涉及到两类配色,一种用来表示表达量的连续性变化,一种则是展示聚类。有一个神奇的R包就是用于处理配色,他的Github地址为 。

devtools::install_github("caleblareau/BuenColors")
library("BuenColors")

它提供了一些列预设的颜色,比方说jdb_color_maps

      HSC       MPP      LMPP       CMP       CLP       MEP       GMP 
"#00441B" "#46A040" "#00AF99" "#FFC179" "#98D9E9" "#F6313E" "#FFA300" pDC      mono     GMP-A     GMP-B     GMP-C       Ery       CD4 
"#C390D4" "#FF5A00" "#AFAFAF" "#7D7D7D" "#4B4B4B" "#8F1336" "#0081C9" CD8        NK         B 
"#001588" "#490C65" "#BA7FD0"

这些颜色就能用于命名单细胞的类群,比如说我选择了前9个

col <- jdb_color_maps[1:9]
names(col) <- levels(cluster_info)

增加列聚类信息

Heatmaprow_splitcolumn_split参数可以通过设置分类变量对热图进行分隔。更多对热图进行拆分,可以参考Heatmap split

Heatmap(mat,cluster_rows = FALSE,cluster_columns = FALSE,show_column_names = FALSE,show_row_names = FALSE,column_split = cluster_info)

Heatmap-2

只用文字描述可能不够好看,最好是带有颜色的分块图,其中里面的颜色和t-SNE或UMAP聚类颜色一致,才能更好的展示信息。

为了增加聚类注释,我们需要用到HeatmapAnnotation函数,它对细胞的列进行注释,而rowAnnotation函数可以对行进行注释。这两个函数能够增加各种类型的注释,包括条形图,点图,折线图,箱线图,密度图等等,这些函数的特征是anno_xxx,例如anno_block就用来绘制区块图。

top_anno <- HeatmapAnnotation(cluster = anno_block(gp = gpar(fill = col), # 设置填充色labels = levels(cluster_info), labels_gp = gpar(cex = 0.5, col = "white"))) # 设置字体

其中anno_block中的gp参数用于设置各类图形参数labels设置标签,labels_gp设置和标签相关的图形参数。可以用?gp来了解有哪些图形参数

Heatmap(mat,cluster_rows = FALSE,cluster_columns = FALSE,show_column_names = FALSE,show_row_names = FALSE,column_split = cluster_info,top_annotation = top_anno, # 在热图上边增加注释column_title = NULL ) # 不需要列标题

Heatmap-3

突出重要基因

由于基因很多直接展示出来,根本看不清,我们可以强调几个标记基因。用到两个函数是rowAnnotationanno_mark

已知不同类群的标记基因如下

Cluster IDMarkers
Cell Type
0
IL7R, CCR7
Naive CD4 T
1
IL7R, S100A4
Memory CD4
2
CD14, LYZ
CD14 Mono
3
MS4A1
B
4
CD8A
CD8 T
5
FCGR3A, MS4A7FCGR3A Mono
6
GNLY, NKG7
NK
7
FCER1A, CST3
DC
8
PPBP
Platelet

我们需要给anno_mark提供基因所在行即可。

mark_gene <- c("IL7R","CCR7","IL7R","S100A4","CD14","LYZ","MS4A1","CD8A","FCGR3A","MS4A7","GNLY","NKG7","FCER1A", "CST3","PPBP")
gene_pos <- which(rownames(mat) %in% mark_gene)row_anno <-  rowAnnotation(mark_gene = anno_mark(at = gene_pos, labels = mark_gene))

接着绘制热图

Heatmap(mat,cluster_rows = FALSE,cluster_columns = FALSE,show_column_names = FALSE,show_row_names = FALSE,column_split = cluster_info,top_annotation = top_anno,right_annotation = row_anno,column_title = NULL)

Heatmap-4

关于如何增加标记注释,参考mark-annotation

调增图例位置

目前的热图还有一个问题,也就是表示表达量范围的图例太占位置了,有两种解决方法

  • 参数设置show_heatmap_legend=FALSE直接删掉。
  • 利用heatmap_legend_param参数更改样式

我们根据legends这一节的内容进行一些调整

Heatmap(mat,cluster_rows = FALSE,cluster_columns = FALSE,show_column_names = FALSE,show_row_names = FALSE,column_split = cluster_info,top_annotation = top_anno,right_annotation = row_anno,column_title = NULL,heatmap_legend_param = list(title = "log2(count 1)",title_position = "leftcenter-rot"))

heatmap-5

因为ComplextHeatmap是基于Grid图形系统,因此可以先绘制热图,然后再用grid::draw绘制图例,从而实现将条形图的位置移动到图中的任意位置。

先获取绘制热图的对象

p <- Heatmap(mat,cluster_rows = FALSE,cluster_columns = FALSE,show_column_names = FALSE,show_row_names = FALSE,column_split = cluster_info,top_annotation = top_anno,right_annotation = row_anno,column_title = NULL,show_heatmap_legend = FALSE)

根据p@matrix_color_mapping获取图例的颜色的设置,然后用Legend构建图例

col_fun  <- circlize::colorRamp2(c(0, 1, 2 ,3, 4),c("#0000FFFF", "#9A70FBFF", "#D8C6F3FF", "#FFC8B9FF", "#FF7D5DFF"))
lgd <-  Legend(col_fun = col_fun, title = "log2(count 1)", title_gp = gpar(col="white", cex = 0.75),title_position = "leftcenter-rot",#direction = "horizontal"at = c(0, 1, 4), labels = c("low", "median", "high"),labels_gp = gpar(col="white"))

绘制图形

grid.newpage() #新建画布
draw(p) # 绘制热图
draw(lgd, x = unit(0.05, "npc"), y = unit(0.05, "npc"), just = c("left", "bottom")) # 绘制图形

heatmap-6

ComplexHeatmap绘制热图非常强大的工具,大部分我想要的功能它都有,甚至我没有想到的它也有,这个教程只是展示其中一小部分功能而已,还有很多功能要慢慢探索。

版权声明:本博客所有文章除特别声明外,均采用 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0) 进行许可。

扫码即刻交流

这篇关于「热图」ComplexHeatmap展示单细胞聚类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1088174

相关文章

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

起点中文网防止网页调试的代码展示

起点中文网对爬虫非常敏感。如图,想在页面启用调试后会显示“已在调试程序中暂停”。 选择停用断点并继续运行后会造成cpu占用率升高电脑卡顿。 经简单分析网站使用了js代码用于防止调试并在强制继续运行后造成电脑卡顿,代码如下: function A(A, B) {if (null != B && "undefined" != typeof Symbol && B[Symbol.hasInstan

Spark2.x 入门: KMeans 聚类算法

一 KMeans简介 KMeans 是一个迭代求解的聚类算法,其属于 划分(Partitioning) 型的聚类方法,即首先创建K个划分,然后迭代地将样本从一个划分转移到另一个划分来改善最终聚类的质量。 ML包下的KMeans方法位于org.apache.spark.ml.clustering包下,其过程大致如下: 1.根据给定的k值,选取k个样本点作为初始划分中心;2.计算所有样本点到每

单细胞降维聚类分群注释全流程学习(seruat5/harmony)

先前置几个推文~ 单细胞天地: https://mp.weixin.qq.com/s/drmfwJgbFsFCtoaMsMGaUA https://mp.weixin.qq.com/s/3uWO8AP-16ynpRQEnEezSw 生信技能树: https://mp.weixin.qq.com/s/Cp7EIXa72nxF3FHXvtweeg https://mp.weixin.qq.

通过Ajax请求后台数据,返回JSONArray(JsonObject),页面(Jquery)以table的形式展示

点击“会商人员情况表”,弹出层,显示一个表格,如下图: 利用Ajax和Jquery和JSONArray和JsonObject来实现: 代码如下: 在hspersons.html中: <!DOCTYPE html><html><head><meta charset="UTF-8"><title>会商人员情况表</title><script type="text/javasc

Jasperreports+jaspersoft studio 实现单个或多个jrxml(jasper)文件生成一个pdf文件,并利用Servlet发送该pdf文件到浏览器中展示

Jasperreports+jaspersoft studio 实现单个或多个jrxml(jasper)文件生成一个pdf文件,并利用Servlet发送该pdf文件到浏览器中展示; 代码如下: Demo07.jrxml <?xml version="1.0" encoding="UTF-8"?><!-- Created with Jaspersoft Studio version 6.6.

【CSS】flex布局 - 左边超过打点, 右边完整展示

场景:宽度一定的情况下右边自适应,左边被挤压。 需要的效果如下: flex 的三个参数分别对应:flex-grow、flex-shrink、flex-basis。 flex-grow:定义项目的放大比例,默认为0。即如果存在剩余空间,也不放大。flex-shrink:定义项目的缩小比例,默认为1。即如果空间不足,该项目将缩小。flex-basis:定义在分配多余空间之前,项目占据的主轴空间。

C# 无法删除 Winform的PictureBox正在展示的图片

最近用C#的前端项目,写了PictureBox展示并上传图片。想删除掉已经展示和上传的图片,提示资源正在使用中不能删除。 查了一些原因,总结原因是PictureBox控件占用着图片资源,不允许删除。 从PictureBox展示图片入手,可以采用以下两个解决办法: 1:使用Bitmap类转接图片资源 Image bmp = new Bitmap(img); this.twoPictureBo