Signac|成年小鼠大脑 单细胞ATAC分析(2)

2024-06-10 13:28

本文主要是介绍Signac|成年小鼠大脑 单细胞ATAC分析(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。

本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。我们通过在不同的系统上进行相同的分析,来展示其性能以及对不同组织类型的适用性,并提供了一个来自不同物种的示例。

创建基因活动矩阵

# compute gene activities
gene.activities <- GeneActivity(brain)

# add the gene activity matrix to the Seurat object as a new assay
brain[['RNA']] <- CreateAssayObject(counts = gene.activities)
brain <- NormalizeData(
  object = brain,
  assay = 'RNA',
  normalization.method = 'LogNormalize',
  scale.factor = median(brain$nCount_RNA)
)

DefaultAssay(brain) <- 'RNA'
FeaturePlot(
  object = brain,
  features = c('Sst','Pvalb',"Gad2","Neurod6","Rorb","Syt6"),
  pt.size = 0.1,
  max.cutoff = 'q95',
  ncol = 3
)
alt

与 scRNA-seq 数据整合

为了更好地解读单细胞ATAC-seq数据,我们可以根据来自相同生物体系(即成年小鼠大脑)的单细胞RNA测序(scRNA-seq)实验结果,

# Load the pre-processed scRNA-seq data
allen_rna <- readRDS("../vignette_data/allen_brain.rds")
allen_rna <- UpdateSeuratObject(allen_rna)
allen_rna <- FindVariableFeatures(
  object = allen_rna,
  nfeatures = 5000
)

transfer.anchors <- FindTransferAnchors(
  reference = allen_rna,
  query = brain,
  reduction = 'cca',
  dims = 1:30
)

predicted.labels <- TransferData(
  anchorset = transfer.anchors,
  refdata = allen_rna$subclass,
  weight.reduction = brain[['lsi']],
  dims = 2:30
)

brain <- AddMetaData(object = brain, metadata = predicted.labels)

plot1 <- DimPlot(allen_rna, group.by = 'subclass', label = TRUE, repel = TRUE) + NoLegend() + ggtitle('scRNA-seq')
plot2 <- DimPlot(brain, group.by = 'predicted.id', label = TRUE, repel = TRUE) + NoLegend() + ggtitle('scATAC-seq')
plot1 + plot2
alt

您可以看到基于 RNA 的分类与 UMAP 可视化一致,仅根据 ATAC-seq 数据计算。

查找簇之间可差异访问的峰值

在这里,我们发现皮层不同层的兴奋性神经元之间的可访问区域存在差异。

#switch back to working with peaks instead of gene activities
DefaultAssay(brain) <- 'peaks'
Idents(brain) <- "predicted.id"

da_peaks <- FindMarkers(
  object = brain,
  ident.1 = c("L2/3 IT"), 
  ident.2 = c("L4""L5 IT""L6 IT"),
  test.use = 'LR',
  latent.vars = 'nCount_peaks'
)

head(da_peaks)
##                                  p_val avg_log2FC pct.1 pct.2    p_val_adj
## chr4-86523678-86525285    3.266647e-69   3.691294 0.426 0.037 5.135267e-64
## chr2-118700082-118704897  8.553383e-61   2.092487 0.648 0.182 1.344617e-55
## chr15-87605281-87607659   3.864918e-55   2.450827 0.499 0.097 6.075767e-50
## chr10-107751762-107753240 1.534485e-52   1.801355 0.632 0.192 2.412257e-47
## chr4-101303935-101305131  5.949521e-51   3.427059 0.356 0.031 9.352825e-46
## chr13-69329933-69331707   1.604991e-49  -2.254722 0.140 0.435 2.523094e-44

plot1 <- VlnPlot(
  object = brain,
  features = rownames(da_peaks)[1],
  pt.size = 0.1,
  idents = c("L4","L5 IT","L2/3 IT")
)
plot2 <- FeaturePlot(
  object = brain,
  features = rownames(da_peaks)[1],
  pt.size = 0.1,
  max.cutoff = 'q95'
)
plot1 | plot2
alt
open_l23 <- rownames(da_peaks[da_peaks$avg_log2FC > 3, ])
open_l456 <- rownames(da_peaks[da_peaks$avg_log2FC < 3, ])
closest_l23 <- ClosestFeature(brain, open_l23)
closest_l456 <- ClosestFeature(brain, open_l456)
head(closest_l23)

##                                 tx_id gene_name            gene_id
## ENSMUST00000151481 ENSMUST00000151481   Fam154a ENSMUSG00000028492
## ENSMUST00000131864 ENSMUST00000131864   Gm12796 ENSMUSG00000085721
## ENSMUST00000139527 ENSMUST00000139527     Yipf1 ENSMUSG00000057375
## ENSMUSE00001329193 ENSMUST00000185379   Gm29414 ENSMUSG00000099392
## ENSMUSE00000514286 ENSMUST00000077353      Hmbs ENSMUSG00000032126
## ENSMUST00000161356 ENSMUST00000161356      Reln ENSMUSG00000042453
##                      gene_biotype type           closest_region
## ENSMUST00000151481 protein_coding  gap   chr4-86487920-86538964
## ENSMUST00000131864        lincRNA  gap chr4-101292521-101318425
## ENSMUST00000139527 protein_coding  cds chr4-107345009-107345191
## ENSMUSE00001329193        lincRNA exon   chr1-25026581-25026779
## ENSMUSE00000514286 protein_coding exon   chr9-44344010-44344228
## ENSMUST00000161356 protein_coding  gap   chr5-21891568-21895988
##                                query_region distance
## ENSMUST00000151481   chr4-86523678-86525285        0
## ENSMUST00000131864 chr4-101303935-101305131        0
## ENSMUST00000139527 chr4-107344435-107345145        0
## ENSMUSE00001329193   chr1-25008426-25009334    17246
## ENSMUSE00000514286   chr9-44345250-44346015     1021
## ENSMUST00000161356   chr5-21894051-21894682        0

head(closest_l456)
##                                 tx_id gene_name            gene_id
## ENSMUST00000104937 ENSMUST00000104937   Ankrd63 ENSMUSG00000078137
## ENSMUSE00000647021 ENSMUST00000068088   Fam19a5 ENSMUSG00000054863
## ENSMUST00000165341 ENSMUST00000165341     Otogl ENSMUSG00000091455
## ENSMUST00000044081 ENSMUST00000044081     Papd7 ENSMUSG00000034575
## ENSMUST00000070198 ENSMUST00000070198    Ppp3ca ENSMUSG00000028161
## ENSMUST00000084628 ENSMUST00000084628    Hs3st2 ENSMUSG00000046321
##                      gene_biotype type            closest_region
## ENSMUST00000104937 protein_coding  cds  chr2-118702266-118703438
## ENSMUSE00000647021 protein_coding exon   chr15-87625230-87625486
## ENSMUST00000165341 protein_coding  utr chr10-107762223-107762309
## ENSMUST00000044081 protein_coding  utr   chr13-69497959-69499915
## ENSMUST00000070198 protein_coding  utr  chr3-136935226-136937727
## ENSMUST00000084628 protein_coding  cds  chr7-121392730-121393214
##                                 query_region distance
## ENSMUST00000104937  chr2-118700082-118704897        0
## ENSMUSE00000647021   chr15-87605281-87607659    17570
## ENSMUST00000165341 chr10-107751762-107753240     8982
## ENSMUST00000044081   chr13-69329933-69331707   166251
## ENSMUST00000070198  chr3-137056475-137058371   118747
## ENSMUST00000084628  chr7-121391215-121395519        0

绘制基因组区域

我们同样可以利用CoveragePlot()函数,根据不同的细胞聚类、细胞类型或对象中存储的其他任何元数据信息,为特定的基因组区域绘制出分组的覆盖度图。这些覆盖度图实际上是伪批量的可访问性轨迹图,通过将同一组内所有细胞的信号进行平均,从而在视觉上展示出特定区域内DNA的可访问性情况。

# show cell types with at least 50 cells
idents.plot <- names(which(table(Idents(brain)) > 50))

CoveragePlot(
  object = brain,
  region = c("Neurod6""Gad2"),
  idents = idents.plot,
  extend.upstream = 1000,
  extend.downstream = 1000,
  ncol = 1
)
alt

本文由 mdnice 多平台发布

这篇关于Signac|成年小鼠大脑 单细胞ATAC分析(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048283

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据